リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Genome-Wide Association Study Detects Loci Involved in Scab Susceptibility in Japanese Apricot」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Genome-Wide Association Study Detects Loci Involved in Scab Susceptibility in Japanese Apricot

Numaguchi, Koji Kashiwamoto, Tomoaki Ishikawa, Ryo Ishii, Takashige Kitamura, Yuto 神戸大学

2023.08

概要

Japanese apricot (Prunus mume) is an important fruit tree in East Asia. ‘Nanko’, the primary cultivar of Japanese apricots, usually suffers from scab, a disease caused by Venturia carpophila. However, there have been few reports on the phenotypic variation in scab resistance/susceptibility and the underlying genetic factors. In this study, we investigated the severity of naturally occurring scabs based on fruit lesions in 108 Japanese apricot accessions over four consecutive years. In each year, both resistant and susceptible accessions were observed, and significant annual correlations were detected among the ratios of diseased fruits (Rt; 0.52–0.76) and among the disease severity indices (Sv; 0.55–0.79). We also conducted a genome-wide association study (GWAS) based on exon-targeted resequencing, and significant peaks were detected in the data from 2017 and 2018. The candidate genes involved in disease resistance are located near nine single-nucleotide polymorphisms. These genes may be associated with the susceptibility of ‘Nanko’ lineages to scab. These findings shed light on the phenotypic and genetic profiles of scab resistance in P. mume and will assist future breeding programs with improving scab resistance.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Mega, K.; Tomita, E.; Kitamura, S.; Saito, S.; Mizukami, S. The Grand Dictionary of Horticulture; Aoba, T., Ed.; Shogakukan: Tokyo,

Japan, 1988; ISBN 978-4-09-305111-8.

Horiuchi, S.; Yoshida, M.; Kariya, H.; Nakamura, T.; Hasebe, H.; Suzaki, T.; Sakitani, T. Nihonnoume Sekainoume; Yokendo: Tokyo,

Japan, 1996.

Chen, J. China Mei Flower (Prunus Mume) Cultivars in Colour; China Forestry Publishing House: Beijing, China, 2017.

Ministry of Agriculture, Forestry and Fisheries Japan the 96th Statistical Yearbook of Ministry of Agriculture, Forestry and

Fisheries: MAFF. Available online: https://www.maff.go.jp/e/data/stat/96th/index.html (accessed on 5 May 2023).

Ministry of Agriculture, Forestry and Fisheries Japan Survey on Production Dynamics of Specialty Fruit Trees (in Japanese).

Available online: https://www.e-stat.go.jp/stat-search/file-download?statInfId=000040042773&fileKind=0 (accessed on 5

May 2023).

Ikeda, K.; Nishide, M.; Tsujimoto, K.; Nagashima, S.; Kuwahara, T.; Mitani, T.; Koyama, A.H. Antiviral and Virucidal Activities of

Umesu Phenolics on Influenza Viruses. Jpn. J. Infect. Dis. 2020, 73, 8–13. [CrossRef] [PubMed]

Enomoto, S.; Yanaoka, K.; Utsunomiya, H.; Niwa, T.; Inada, K.; Deguchi, H.; Ueda, K.; Mukoubayashi, C.; Inoue, I.; Maekita,

T.; et al. Inhibitory Effects of Japanese Apricot (Prunus Mume Siebold et Zucc.; Ume) on Helicobacter Pylori-Related Chronic

Gastritis. Eur. J. Clin. Nutr. 2010, 64, 714–719. [CrossRef] [PubMed]

Kono, R.; Nakamura, M.; Nomura, S.; Kitano, N.; Kagiya, T.; Okuno, Y.; Inada, K.; Tokuda, A.; Utsunomiya, H.; Ueno, M.

Biological and Epidemiological Evidence of Anti-Allergic Effects of Traditional Japanese Food Ume (Prunus Mume). Sci. Rep.

2018, 8, 11638. [CrossRef] [PubMed]

Bailly, C. Anticancer Properties of Prunus Mume Extracts (Chinese Plum, Japanese Apricot). J. Ethnopharmacol. 2020, 246, 112215.

[CrossRef]

Fisher, E.E. Venturia Carpophila Sp.Nov., the Ascigerous State of the Apricot Freckle Fungus. Trans. Br. Mycol. Soc. 1961, 44,

337-IN4. [CrossRef]

Chen, C.; Bock, C.H.; Wood, B.W. Draft Genome Sequence of Venturia Carpophila, the Causal Agent of Peach Scab. Stand. Genom.

Sci. 2017, 12, 68. [CrossRef]

Takeda, T.; Hishiike, M.; Numaguchi, K. Occurrence of QoI-Resistant Strains of Cladosporium Carpophilum Causing Japanese

Apricot Scab in Wakayama Prefecture. Ann. Rept. Kansai Pl. Prot. 2022, 64, 75–80. [CrossRef]

Mori, M.; Yamana, T. Occurrence of DMI-Resistant Strains of Venturia Inaequalis Causing Apple Scab in Hokkaido. Ann. Rept. Soc.

Pl. Prot. Nort. Jap. 2022, 76–80. [CrossRef]

Shimada, T.; Haji, T.; Yamaguchi, M.; Takeda, T.; Nomura, K.; Yoshida, M. Classification of Mume (Prunus mume Sieb. et Zucc.) by

RAPD Assay. J. Jpn. Soc. Hort. Sci. 1994, 63, 543–551. [CrossRef]

Numaguchi, K.; Ishio, S.; Kitamura, Y.; Nakamura, K.; Ishikawa, R.; Ishii, T. Microsatellite Marker Development and Population

Structure Analysis in Japanese Apricot (Prunus mume Sieb. et Zucc.). Hort. J. 2019, 88, 222–231. [CrossRef]

Hayashi, K.; Shimazu, K.; Yaegaki, H.; Yamaguchi, M.; Iketani, H.; Yamamoto, T. Genetic Diversity in Fruiting and FlowerOrnamental Japanese Apricot (Prunus mume) Germplasms Assessed by SSR Markers. Breed Sci. 2008, 58, 401–410. [CrossRef]

Ohta, S.; Hayashi, K.; Yaegaki, H.; Mitsui, N.; Omura, M.; Nishitani, C.; Yamamoto, T. Genetic Relationship among Fruiting and

Flower-Japanese Apricot Characterized by Chloroplast DNA Markers. DNA Polymorph. 2006, 14, 138–140.

Numaguchi, K.; Akagi, T.; Kitamura, Y.; Ishikawa, R.; Ishii, T. Interspecific Introgression and Natural Selection in the Evolution of

Japanese Apricot (Prunus mume). Plant J. 2020, 104, 1551–1567. [CrossRef] [PubMed]

Zhang, Q.; Zhang, H.; Sun, L.; Fan, G.; Ye, M.; Jiang, L.; Liu, X.; Ma, K.; Shi, C.; Bao, F.; et al. The Genetic Architecture of Floral

Traits in the Woody Plant Prunus Mume. Nat. Commun. 2018, 9, 1702. [CrossRef]

Tao, R.; Habu, T.; Yamane, H.; Sugiura, A.; Iwamoto, K. Molecular Markers for Self-Compatibility in Japanese Apricot (Prunus

mume). HortScience 2000, 35, 1121–1123. [CrossRef]

Horticulturae 2023, 9, 872

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

13 of 14

McClure, K.A.; Sawler, J.; Gardner, K.M.; Money, D.; Myles, S. Genomics: A Potential Panacea for the Perennial Problem. Am. J.

Bot. 2014, 101, 1780–1790. [CrossRef]

Groth, J.V.; Ozmon, E.A.; Busch, R.H. Repeatability and Relationship of Incidence and Severity Measures of Scab of Wheat Caused

by Fusarium Graminearum in Inoculated Nurseries. Plant Dis. 1999, 83, 1033–1038. [CrossRef]

Cardoso, J.E.; Santos, A.A.; Rossetti, A.G.; Vidal, J.C. Relationship between Incidence and Severity of Cashew Gummosis in

Semiarid North-Eastern Brazil. Plant Pathol. 2004, 53, 363–367. [CrossRef]

Verde, I.; Jenkins, J.; Dondini, L.; Micali, S.; Pagliarani, G.; Vendramin, E.; Paris, R.; Aramini, V.; Gazza, L.; Rossini, L.; et al. The

Peach v2.0 Release: High-Resolution Linkage Mapping and Deep Resequencing Improve Chromosome-Scale Assembly and

Contiguity. BMC Genom. 2017, 18, 225. [CrossRef]

Alexander, D.H.; Novembre, J.; Lange, K. Fast Model-Based Estimation of Ancestry in Unrelated Individuals. Genome Res. 2009,

19, 1655–1664. [CrossRef]

Browning, B.L.; Zhou, Y.; Browning, S.R. A One-Penny Imputed Genome from Next-Generation Reference Panels. Am. J. Hum.

Genet. 2018, 103, 338–348. [CrossRef]

Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for Association Mapping of

Complex Traits in Diverse Samples. Bioinformatics 2007, 23, 2633–2635. [CrossRef] [PubMed]

Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and Visualization of LD and Haplotype Maps. Bioinformatics 2005,

21, 263–265. [CrossRef]

McDonald, B.A.; Stukenbrock, E.H. Rapid Emergence of Pathogens in Agro-Ecosystems: Global Threats to Agricultural Sustainability and Food Security. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20160026. [CrossRef]

Papp, D.; Gao, L.; Thapa, R.; Olmstead, D.; Khan, A. Field Apple Scab Susceptibility of a Diverse Malus Germplasm Collection

Identifies Potential Sources of Resistance for Apple Breeding. CABI Agric. Biosci. 2020, 1, 16. [CrossRef]

Kitamura, Y.; Takeda, T.; Numaguchi, K.; Tsuchida, Y.; Negoro, K.; Hayashi, K.; Iwamoto, K.; Hishiike, M.; Naka, K.; Shimazu, K.

Breeding of scab-resistant Japanese apricot (Prunus mume Sieb. et Zucc.) “Seiko” and evaluation of possibility for fungicide-saving

cultivation. Bull. Wakayama Prefect. Exp. Station. Agric. Forest. Fish. 2018, 6, 27–35.

Numaguchi, K.; Kitamura, Y.; Takeda, T.; Shimomura, Y.; Tsunaki, K.; Kashiwamoto, T.; Shimazu, K.; Hishiike, M.; Iwamoto, K.;

Negoro, K.; et al. Breeding of Japanese apricot (Prunus mume Sieb. et Zucc.) ‘Seishu’. Bull. Wakayama Prefect. Exp. Station. Agric.

Forest. Fish. 2021, 9, 73–85.

Korte, A.; Farlow, A. The Advantages and Limitations of Trait Analysis with GWAS: A Review. Plant Methods 2013, 9, 29.

[CrossRef]

Jones, D.A.; Jones, J.D.G. The Role of Leucine-Rich Repeat Proteins in Plant Defences. In Advances in Botanical Research; Andrews,

J.H., Tommerup, I.C., Callow, J.A., Eds.; Academic Press: Cambridge, MA, USA, 1997; Volume 24, pp. 89–167.

Weis, C.; Pfeilmeier, S.; Glawischnig, E.; Isono, E.; Pachl, F.; Hahne, H.; Kuster, B.; Eichmann, R.; Hückelhoven, R. CoImmunoprecipitation-Based Identification of Putative BAX INHIBITOR-1-Interacting Proteins Involved in Cell Death Regulation

and Plant–Powdery Mildew Interactions. Mol. Plant Pathol. 2013, 14, 791–802. [CrossRef]

Van Damme, M.; Huibers, R.P.; Elberse, J.; Van den Ackerveken, G. Arabidopsis DMR6 Encodes a Putative 2OG-Fe(II) Oxygenase

That Is Defense-Associated but Required for Susceptibility to Downy Mildew. Plant J. 2008, 54, 785–793. [CrossRef]

Thatcher, L.F.; Powell, J.J.; Aitken, E.A.B.; Kazan, K.; Manners, J.M. The Lateral Organ Boundaries Domain Transcription Factor

LBD20 Functions in Fusarium Wilt Susceptibility and Jasmonate Signaling in Arabidopsis. Plant Physiol. 2012, 160, 407–418.

[CrossRef]

Hu, Y.; Zhang, J.; Jia, H.; Sosso, D.; Li, T.; Frommer, W.B.; Yang, B.; White, F.F.; Wang, N.; Jones, J.B. Lateral Organ Boundaries 1 Is

a Disease Susceptibility Gene for Citrus Bacterial Canker Disease. Proc. Natl. Acad. Sci. USA 2014, 111, E521–E529. [CrossRef]

[PubMed]

Rissel, D.; Peiter, E. Poly(ADP-Ribose) Polymerases in Plants and Their Human Counterparts: Parallels and Peculiarities. Int. J.

Mol. Sci. 2019, 20, 1638. [CrossRef]

Minamikawa, M.F.; Takada, N.; Terakami, S.; Saito, T.; Onogi, A.; Kajiya-Kanegae, H.; Hayashi, T.; Yamamoto, T.; Iwata, H.

Genome-Wide Association Study and Genomic Prediction Using Parental and Breeding Populations of Japanese Pear (Pyrus

Pyrifolia Nakai). Sci. Rep. 2018, 8, 11994. [CrossRef]

Minamikawa, M.F.; Nonaka, K.; Kaminuma, E.; Kajiya-Kanegae, H.; Onogi, A.; Goto, S.; Yoshioka, T.; Imai, A.; Hamada, H.;

Hayashi, T.; et al. Genome-Wide Association Study and Genomic Prediction in Citrus: Potential of Genomics-Assisted Breeding

for Fruit Quality Traits. Sci. Rep. 2017, 7, 4721. [CrossRef] [PubMed]

Roth, M.; Muranty, H.; Di Guardo, M.; Guerra, W.; Patocchi, A.; Costa, F. Genomic Prediction of Fruit Texture and Training

Population Optimization towards the Application of Genomic Selection in Apple. Hortic. Res. 2020, 7, 148. [CrossRef]

Li, Y.-L.; Weng, J.-C.; Hsiao, C.-C.; Chou, M.-T.; Tseng, C.-W.; Hung, J.-H. PEAT: An Intelligent and Efficient Paired-End

Sequencing Adapter Trimming Algorithm. BMC Bioinform. 2015, 16, S2. [CrossRef] [PubMed]

Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30,

2114–2120. [CrossRef]

Li, H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997.

Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [CrossRef]

Horticulturae 2023, 9, 872

47.

48.

49.

50.

51.

52.

14 of 14

Auwera, G.A.; O’Connor, B.D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra; O’Reilly Media: Sebastopol, CA,

USA, 2020.

Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.;

et al. The Variant Call Format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [CrossRef]

Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.;

et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81,

559–575. [CrossRef]

Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models

and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [CrossRef]

Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate

Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589. [CrossRef]

Minh, B.Q.; Nguyen, M.A.T.; von Haeseler, A. Ultrafast Approximation for Phylogenetic Bootstrap. Mol. Biol. Evol. 2013, 30,

1188–1195. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る