リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effect of transforming growth factor - β1 on function and expression of monocarboxylate transporter 1 in alveolar epithelial cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effect of transforming growth factor - β1 on function and expression of monocarboxylate transporter 1 in alveolar epithelial cells

Uddin Mohi 広島大学

2020.09.18

概要

Halestrap and his research group first determined the presence of a
proton coupled MCT1 in human red blood cells. They showed that
transport of L-lactate and pyruvate into human red blood cells was
clearly inhibited by CHC (Halestrap and Denton 1974). Later both
Halestrap’s and Deuticke’s laboratories characterized the detailed
kinetics of this transporter (Deuticke 1982; Poole and Halestrap 1993).
Finally, the molecular identity of the protein responsible was confirmed
by Christine Kim Garcia in the laboratory of Goldstein and Brown. The
transporter was named MCT1 by these authors (Kim-Garcia et al. 1994). ...

この論文で使われている画像

参考文献

z Abid SH, Malhotra V, Perry MC (2001) Radiation-induced and

chemotherapy-induced pulmonary injury. Curr Opin Oncol 13:242-8.

https://doi.org/10.1097/00001622-200107000-00006

z Batlle E, Sancho E, Francí C, et al. (2000) The transcription factor snail

is a repressor of E-cadherin gene expression in epithelial tumour

cells. Nat Cell Biol 2:84-89. https://doi:10.1038/35000034

z Benedek TG (2010) Methotrexate: from its introduction to non-

oncologic therapeutics to anti-TNF-α. Clin Exp Rheumatol 28 (5 Suppl

61):S3-S8.

z Bergersen LH (2007) Is lactate food for neurons? Comparison of

monocarboxylate transporter subtypes in brain and muscle.

Neuroscience 145:11-19.

https://doi:10.1016/j.neuroscience.2006.11.062

z Bleyer WA (1978) The clinical pharmacology of methotrexate: new

applications of an old drug. Cancer 41:36-51.

https://doi:10.1002/1097-0142(197801)41:1<36::aidcncr2820410108>3.0.co;2-i

80

z Bröer S, Bröer A, Schneider HP, Stegen C, Halestrap AP, Deitmer JW

(1999) Characterization of the high-affinity monocarboxylate

transporter MCT2 in Xenopus laevis oocytes. Biochem J 341:529–

535. https://doi.org/10.1042/0264-6021:3410529

z Brooks GA. Cell-cell and intracellular lactate shuttles (2009) J Physiol

587:5591-5600. https://doi:10.1113/jphysiol.2009.178350

z Cano A, Pérez-Moreno MA, Rodrigo I, et al. (2000) The transcription

factor snail controls epithelial-mesenchymal transitions by

repressing E-cadherin expression. Nat Cell Biol 2(2):76-83.

https://doi:10.1038/35000025

z Choi JW, Kim Y, Lee JH, Kim YS (2014) Prognostic significance of

lactate/proton symporters MCT1, MCT4, and their chaperone

CD147 expressions in urothelial carcinoma of the bladder. Urology

84:245.e9-15. https://doi.org/10.1016/j.urology.2014.03.031

z DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The

biology of cancer: metabolic reprogramming fuels cell growth and

proliferation. Cell Metab 7:11–20.

https://doi.org/10.1016/j.cmet.2007.10.002

81

z Deuticke B (1982) Monocarboxylate transport in erythrocytes. J

Membr Biol 70:89-103. https://doi:10.1007/BF01870219

z Doherty JR, Yang C, Scott KE, et al. (2014) Blocking lactate export by

inhibiting the Myc target MCT1 Disables glycolysis and glutathione

synthesis. Cancer Res 74:908–920.

https://doi.org/10.1158/00085472.CAN-13-2034

z Eilertsen M, Andersen S, Al-Saad S et al. (2014) Monocarboxylate

transporters 1-4 in NSCLC: MCT1 is an independent prognostic

marker for survival. PLoS One 9:e105038.

https://doi.org/10.1371/journal.pone.0105038

z Fang J, Quinones QJ, Holman TL, et al. (2006) The H+-linked

monocarboxylate transporter (MCT1/SLC16A1): a potential

therapeutic target for high-risk neuroblastoma. Mol Pharmacol

70:2108–2115. https://doi.org/10.1124/mol.106.026245

z Feron O (2009) Pyruvate into lactate and back: from the Warburg

effect to symbiotic energy fuel exchange in cancer cells. Radiother

Oncol 92:329–333. https://doi.org/10.1016/j.radonc.2009.06.025

82

z Fiaschi T, Marini A, Giannoni E, et al. (2012) Reciprocal metabolic

reprogramming through lactate shuttle coordinately influences

tumor-stroma interplay. Cancer Res 72:5130–5140.

https://doi.org/10.1158/0008-5472.CAN-12-1949

z Fishbein WN, Merezhinskaya N, Foellmer JW (2002) Relative

distribution of three major lactate transporters in frozen human

tissues and their localization in unfixed skeletal muscle. Muscle

Nerve 26:101–112. https://doi.org/10.1002/mus.10168

z Gan L, Xiu R, Ren P, et al. (2016) Metabolic targeting of oncogene

MYC by selective activation of the proton-coupled

monocarboxylate family of transporters. Oncogene 35(23):30373048. https://doi:10.1038/onc.2015.360

z Garcia CK, Goldstein JL, Pathak RK, Anderson RG, Brown MS (1994)

Molecular characterization of a membrane transporter for lactate,

pyruvate, and other monocarboxylates: implications for the Cori

cycle. Cell 76:865–873. https://doi.org/10.1016/00928674(94)90361-1

83

z Gray AL, Coleman DT, Shi R, Cardelli JA (2016) Monocarboxylate

transporter 1 contributes to growth factor-induced tumor cell

migration independent of transporter activity. Oncotarget 7:32695–

32706. https://doi.org/10.18632/oncotarget.9016

z Halestrap AP, Denton RM (1974) Specific inhibition of pyruvate

transport in rat liver mitochondria and human erythrocytes by

acyano-4-hydroxycinnamate. Biochem J 138:313–316.

https://doi.org/10.1042/bj1380313

z Halestrap AP, Meredith D (2004) The SLC16 gene family-from

monocarboxylate transporters (MCTs) to aromatic amino acid

transporters and beyond. Pflugers Arch 447:619–628.

https://doi.org/10.1007/s00424-003-1067-2

z Halestrap AP, Price NT (1999) The proton-linked monocarboxylate

transporter (MCT) family: structure, function and regulation.

Biochem J 343:281-299.

z Halestrap AP, Wilson MC (2012) The monocarboxylate transporter

family–role and regulation. IUBMB Life 64:109–119.

https://doi.org/10.1002/iub.572

84

z Ikehata M, Yumoto R, Nakamura K, Nagai J, Takano M (2008)

Comparison of albumin uptake in rat alveolar type II and type I-like

epithelial cells in primary culture. Pharm Res 25:913-922.

https://doi:10.1007/s11095-007-9426-x

z Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and

its implications for fibrosis. J Clin Invest 112:1776–1784. https://doi.

org/10.1172/JCI20530

z Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal

transition. J Clin Invest 119:1420–1428.

https://doi.org/10.1172/JCI39104

z Kang H, Kim H, Lee S et al. (2019) Role of metabolic reprogramming

in epithelial–mesenchymal transition (EMT). Int J Mol Sci 20:2042.

https://doi.org/10.3390/ijms20082042

z Kawami M, Deguchi J, Yumoto R, Sakakibara N, Tsukamoto I, Konishi

R, Takano M (2017) Effect of COA-Cl on transforming growth factor-

β1-induced epithelial-mesenchymal transition in RLE/Abca3 cells.

Drug Metab Pharmacokinet 32:224–227.

https://doi.org/10.1016/j.dmpk.2017.05.001

85

z Kawami M, Harabayashi R, Harada R, Yamagami Y, Yumoto R, Takano

M(2018) Folic acid prevents methotrexate-induced epithelial

mesenchymal transition via suppression of secreted factors from the

human alveolar epithelial cell line A549. Biochem Biophys Res

Commun 497:457–463. https://doi.org/10.1016/j.bbrc.2018.02.111

z Kawami M, Harabayashi R, MiyamotoM, Harada R, Yumoto R, Takano

M (2016) Methotrexate-induced epithelial–mesenchymal transition in

the alveolar epithelial cell line A549. Lung 194:923–930.

https://doi.org/10.1007/s00408-016-9935-7

z Kawami M, Yamada Y, Issarachot O, Junyaprasert VB, Yumoto R, Takano

M (2018) P-gp modulating effect of Azadirachta indica extract in

multidrug-resistant cancer cell lines. Pharmazie 73:104–109.

https://doi.org/10.1691/ph.2018.7116

z Kim KK, Kugler MC, Wolters PJ et al. (2006) Alveolar epithelial cell

mesenchymal transition develops in vivo during pulmonary fibrosis

and is regulated by the extracellular matrix. Proc Natl Acad Sci USA

103:13180–13185. https://doi.org/10.1073/pnas.0605669103

86

z Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s

contributions to current concepts of cancer metabolism. Nat Rev

Cancer 11:325–337. https://doi.org/10.1038/nrc3038

z Kottmann RM, Hogan CM, Phipps RP, Sime PJ (2009) Determinants of

initiation and progression of idiopathic pulmonary

fibrosis. Respirology 14:917-933. https://doi:10.1111/j.14401843.2009.01624.x

z Kottmann RM, Kulkarni AA, Smolnycki KA, et al. (2012) Lactic acid is

elevated in idiopathic pulmonary fibrosis and induces myofibroblast

differentiation via pH-dependent activation of transforming growth

factor-β. Am J Respir Crit Care Med 186:740–751.

https://doi.org/10.1164/rccm.201201-0084OC

z Lieber M, Smith B, Szakal A et al (1976) A continuous tumor-cell line

from a human lung carcinoma with properties of type II alveolar

epithelial cells. Int J Cancer 17:62–70.

https://doi.org/10.1002/ijc.2910170110

z Liu M, Quek LE, Sultani G, Turner N (2016) Epithelial-mesenchymal

transition induction is associated with augmented glucose uptake

and lactate production in pancreatic ductal adenocarcinoma. Cancer

Metab 4:19. https://doi.org/10.1186/s40170-016-0160-x

87

z Lottes RG, Newton DA, Spyropoulos DD, Baatz JE (2014) Alveolar type

II cells maintain bioenergetic homeostasis in hypoxia through

metabolic and molecular adaptation. Am J Physiol Lung Cell Mol

Physiol 306:L947–L955. https://doi.org/10.1152/ajplung.00298.2013

z Lottes RG, Newton DA, Spyropoulos DD, Baatz JE (2015) Lactate as

substrate for mitochondrial respiration in alveolar epithelial type II

cells. Am J Physiol Lung CellMol Physiol 308:L953–L961.

https://doi.org/10.1152/ajplung.00335.2014

z Martinez FJ, Safrin S, Weycker D, et al. (2005) The clinical course of

patients with idiopathic pulmonary fibrosis. Ann Intern Med 142:963967. https://doi.org/10.7326/0003-4819-142-12_part_1-20050621000005

z Morais-Santos F, Granja S, Miranda-Gonçalves V, et al. (2015)

Targeting lactate transport suppresses in vivo breast tumour growth.

Oncotarget 6:19177–19189.

https://doi.org/10.18632/oncotarget.3910

z Morandi A, Taddei ML, Chiarugi P, Giannoni E (2017) Targeting the

metabolic reprogramming that controls epithelial-to-mesenchymal

transition in aggressive tumors. Front Oncol 7:40.

https://doi.org/10.3389/fonc.2017.00040

88

z Morris ME, Felmlee MA (2008) Overview of the proton-coupled MCT

(SLC16A) family of transporters: characterization, function and role in

the transport of the drug of abuse gamma-hydroxybutyric acid. AAPS J

10:311-321. https://doi:10.1208/s12248-008-9035-6

z Nieto MA, Huang RY, Jackson RA, Thiery JP (2016) EMT:2016. Cell

166:21-45. https://doi:10.1016/j.cell.2016.06.028

z Ohbayashi M, Kubota S, Kawase A, Kohyama N, Kobayashi Y,

Yamamoto T (2014) Involvement of epithelial-mesenchymal transition

in methotrexate-induced pulmonary fibrosis. J Toxicol Sci 39:319-330.

https://doi.org/10.2131/jts.39.319

z Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA (2008)

Loss of E-cadherin promotes metastasis via multiple downstream

transcriptional pathways. Cancer Res. 68:3645-3654.

https://doi:10.1158/0008-5472.CAN-07-2938

z Ovens MJ, Davies AJ, Wilson MC, Murray CM, Halestrap AP (2010) ARC155858 is a potent inhibitor of monocarboxylate transporters MCT1

and MCT2 that binds to an intracellular site involving transmembrane

helices 7-10. Biochem J 425:523-530. https://doi:10.1042/BJ20091515

89

z Peinado H, Olmeda D, Cano A (2007) Snail Zeb and bHLH factors in

tumour progression: an alliance against the epithelial phenotype?

Nat Rev Cancer 7:415-428. https://doi:10.1038/nrc2131

z Poole RC, Halestrap AP (1993) Transport of lactate and other

monocarboxylates across mammalian plasma membranes. Am J

Physiol 264:C761– C782.

https://doi.org/10.1152/ajpcell.1993.264.4.C761

z Poole RC, Halestrap AP (1994) N-Terminal protein sequence analysis

of the rabbit erythrocyte lactate transporter suggests identity with

the cloned monocarboxylate transport protein MCT1. Biochem J 303:

755–759. https://doi.org/10.1042/bj3030755

z Rajitha P, Biswas R, Sabitha M, Jayakumar R (2017) Methotrexate in

the treatment of psoriasis and rheumatoid arthritis: mechanistic

insights, current issues and novel delivery approaches. Curr Pharm

Des 23:3550-3566.

https://doi.org/10.2174/1381612823666170601105439

z Raghu G, Weycker D, Edelsberg J, Bradford WZ, Oster G (2006)

Incidence and prevalence of idiopathic pulmonary fibrosis. Am J

Respir Crit Care Med 174:810-816.

https://doi.org/10.1164/rccm.200602-163OC

90

z Shi M, Zhu J, Wang R, et al. (2011) Latent TGF-β structure and

activation. Nature 474:343–349.

https://doi.org/10.1038/nature10152

z Smith AP, Verrecchia A, Fagà G, et al (2009) A positive role for Myc

in TGFbeta-induced Snail transcription and epithelial-tomesenchymal transition. Oncogene 28(3):422-430.

https://doi:10.1038/onc.2008.395

z Thorens B, Mueckler M (2010) Glucose transporters in the 21st

Century. Am J Physiol Endocrinol Metab 298:E141-E145.

https://doi.org/10.1152/ajpendo.00712.2009

z Takano M, Yamamoto C, Yamaguchi K et al. (2015) Analysis of TGFβ1-and drug-induced epithelial-mesenchymal transition in cultured

alveolar epithelial cell line RLE/Abca3. Drug Metab Pharmacokint

30:111–118. https://doi.org/10.1016/j.dmpk.2014.10.007

z Thorens B (1996) Glucose transporters in the regulation of intestinal,

renal, and liver glucose fluxes. Am J Physiol. 270:G541-G553.

https://doi.org/10.1152/ajpgi.1996.270.4.G541

91

z Thorens B, Mueckler M (2010) Glucose transporters in the 21st

Century. Am J Physiol Endocrinol Metab 298: E141-5.

https://doi.org/10.1152/ajpendo.00712.2009

z Tuder RM, Lara AR, Thannickal VJ (2012) Lactate, a novel trigger of

transforming growth factor-β activation in idiopathic pulmonary

fibrosis. Am J Respir Crit Care Med 186:701–70.

https://doi.org/10.1164/rccm.201208-1491ED

z Valvona CJ, Fillmore HL, Nunn PB, Pilkington GJ (2016) The Regulation

and Function of Lactate Dehydrogenase A: Therapeutic Potential in

Brain Tumor. Brain Pathol 26:3-17. https://doi:10.1111/bpa.12299

z Willis BC, Borok Z (2007) TGF-β-induced EMT: mechanisms and

implications for fibrotic lung disease. Am J Physiol Lung Cell Mol

Physiol 293:L535–L534. https://doi.org/10.1152/ajplung.00163

z Wolters PJ, Collard HR, Jones KD (2014) Pathogenesis of idiopathic

pulmonary fibrosis. Annu Rev Pathol 9:157–179.

https://doi.org/10.1146/annurev-pathol-012513-104706

z Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J

Pathol 214:199-210. https://doi.org/10.1002/path.2277

92

z Xie N, Tan Z, Banerjee S, et al. (2015) Glycolytic Reprogramming in

Myofibroblast Differentiation and Lung Fibrosis. Am J Respir Crit

Care Med 192:1462–1474. https://doi.org/10.1164/rccm.2015040780OC

z Yu K, Li Q, Shi G, Li N (2018) Involvement of epithelial-mesenchymal

transition in liver fibrosis. Saudi J Gastroenterol 24:5-11.

https://doi.org/10.4103/sjg.SJG_297_17

z Zank DC, Bueno M, Mora AL, Rojas M (2018) Idiopathic pulmonary

fibrosis: aging, mitochondrial dysfunction, and cellular

bioenergetics. Front Med 5:10.

https://doi.org/10.3389/fmed.2018.00010

z Zhang G, Zhang Y, Dong D, et al. (2018) MCT1 regulates aggressive

and metabolic phenotypes in bladder cancer. J Cancer 9:2492–2501.

https://doi.org/10.7150/jca.25257

93

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る