リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Production cross sections of medical radioisotopes 52gMn and 198gAu via charged-particle-induced reactions」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Production cross sections of medical radioisotopes 52gMn and 198gAu via charged-particle-induced reactions

DAMDINSUREN, Gantumur 北海道大学

2023.06.30

概要

1.1 Nuclear medicine
George de Hevesi was a Hungarian physician who first used radioactive isotopes in bone studies
in 1924. This is considered the beginning of nuclear medicine, which uses small amounts of
radioactive material to diagnose and treat diseases (Myers, 1979). In 1932, Ernest O. Lawrence, an
American physicist, invented the first cyclotron. The invention of the cyclotron was a breakthrough
in nuclear physics and paved the way for developing other types of particle accelerators. It also
played an important role in developing nuclear medicine by producing radioisotopes for medical use
(Lawrence & Livingston, 1932). ...

この論文で使われている画像

参考文献

Alauddin, M. M. (2012). Positron emission tomography (PET) imaging with (18)F-based

radiotracers. American Journal of Nuclear Medicine and Molecular Imaging, 2, 55-76.

Alfassi, Z. B., Persico, E., Groppi, F., & Bonardi, M. L. (2009). On the photon self-absorption

correction for thin-target-yields vs. thick-target-yields in radionuclide production. Applied

Radiation and Isotopes, 67, 240-242. https://doi.org/10.1016/j.apradiso.2008.10.004

Ali, B. M., Al-Abyad, M., Seddik, U., El-Kameesy, S. U., Ditrói, F., Takács, S., & Tárkányi, F. (2018).

Activation cross-section data for α-particle-induced nuclear reactions on natural vanadium for

practical applications. Pramana - Journal of Physics 90, 41. https://doi.org/10.1007/s12043018-1527-z

Baum, R. P., & Kulkarni, H. R. (2012). Theranostics: From molecular imaging using Ga-68 labeled

tracers and PET/CT to personalized radionuclide therapy - the bad berka experience. In

Theranostics, 2, 437-447. https://doi.org/10.7150/thno.3645

Benešová, M., & Reischl, G. (2022). Production of radionuclides: Cyclotrons and reactors. Nuclear

Medicine and Molecular Imaging, 1, 52–65. https://doi.org/10.1016/B978-0-12-8229606.00003-X

Bianchi, F., Marchi, C., Fuad, G., Groppi, F., Haddad, F., Magagnin, L., & Manenti, S. (2020). On

the production of 52gMn by deuteron irradiation on natural chromium and its radionuclidic purity.

Applied Radiation and Isotopes, 166, 109329. https://doi.org/10.1016/j.apradiso.2020.109329

Bindu, K. B., Mukheijee, S., & Singh, N. L. (1998). Pre-equilibrium model analysis of alpha particle

induced reactions up to 80 MeV. Physica Scripta, 57, 201-206. https://doi.org/10.1088/00318949/57/2/007

Black, K. C. L., Wang, Y., Luehmann, H. P., Cai, X., Xing, W., Pang, B., Zhao, Y., Cutler, C. S.,

Wang, L. V., Liu, Y., & Xia, Y. (2014). Radioactive 198Au-doped nanostructures with different

shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution.

ACS Nano, 8, 4385–4394. https://doi.org/10.1021/nn406258m

Boros, E., Marquez, B. v., Ikotun, O. F., Lapi, S. E., & Ferreira, C. L. (2014). Coordination Chemistry

and Ligand Design in the Development of Metal Based Radiopharmaceuticals. In Ligand

Design in Medicinal Inorganic Chemistry. https://doi.org/10.1002/9781118697191.ch3

Boros, E., & Packard, A. B. (2019). Radioactive Transition Metals for Imaging and Therapy. In

Chemical Reviews, 119, 870–901. https://doi.org/10.1021/acs.chemrev.8b00281

60

Bowman, W. W., & Blann, M. (1969). Reactions of

51

V and

27

Al with 7-120 MeV α-particles

(equilibrium and non-equilibrium statistical analyses). Nuclear Physics, Section A, 131, 513531. https://doi.org/10.1016/0375-9474(69)90592-2

Buchegger, F., Perillo-Adamer, F., Dupertuis, Y. M., & Bischof Delaloye, A. (2006). Auger radiation

targeted into DNA: A therapy perspective. In European Journal of Nuclear Medicine and

Molecular Imaging, 33, 1352–1363. https://doi.org/10.1007/s00259-006-0187-2

Chakravarty, R., Chakraborty, S., Guleria, A., Kumar, C., Kunwar, A., Nair, K. V. V., Sarma, H. D.,

& Dash, A. (2019). Clinical scale synthesis of intrinsically radiolabeled and cyclic RGD peptide

functionalized 198Au nanoparticles for targeted cancer therapy. Nuclear Medicine and Biology,

72, 1-10. https://doi.org/10.1016/j.nucmedbio.2019.05.005

Chanda, N., Kan, P., Watkinson, L. D., Shukla, R., Zambre, A., Carmack, T. L., Engelbrecht, H.,

Lever, J. R., Katti, K., Fent, G. M., Casteel, S. W., Smith, C. J., Miller, W. H., Jurisson, S.,

Boote, E., Robertson, J. D., Cutler, C., Dobrovolskaia, M., Kannan, R., & Katti, K. v. (2010).

Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP

nanoconstruct in prostate tumor-bearing mice. Nanomedicine: Nanotechnology, Biology, and

Medicine, 6, 201-209. https://doi.org/10.1016/j.nano.2009.11.001

Chowdhury, D. P., Pal, S., Saha, S. K., & Gangadharan, S. (1995). Determination of cross section of

α-induced nuclear reaction on natural Cr and Zr by stacked foil activation for thin layer

activation analysis. Nuclear Inst. and Methods in Physics Research, B, 103, 261-266.

https://doi.org/10.1016/0168-583X(95)00663-X

Chu, S. Y. F., Ekström, L. P., & Firestone, R. B. (1999). The LUND/LBNL nuclear data search

(version 2.0) [WWW Document]. URL http://nucleardata.nuclear.lu.se/toi/

Dmitriev, P. P., Konstantinov, I. O., & Krasnov, N. N. (1969). Methods for producing the 52Mn isotope.

In Soviet Atomic Energy, 26, 539–541. https://doi.org/10.1007/BF01174115

Engle, J. W., Ignatyuk, A. v., Capote, R., Carlson, B. v., Hermanne, A., Kellett, M. A., Kibédi, T.,

Kim, G., Kondev, F. G., Hussain, M., Lebeda, O., Luca, A., Nagai, Y., Naik, H., Nichols, A. L.,

Nortier, F. M., Suryanarayana, S. v., Takács, S., Tárkányi, F. T., & Verpelli, M. (2019).

Recommended Nuclear Data for the Production of Selected Therapeutic Radionuclides.

Nuclear Data Sheets, 155, 56–74. https://doi.org/10.1016/J.NDS.2019.01.003

Fernandes, M. A. R., Andrade, A. L. de, Biazzono, L., Luvizotto, M. C. R., Santos, A. dos, & Correa,

C. (2003). Gold (198Au) foils brachytherapy use on canine skin tumor. Brazilian Journal of

Veterinary Research and Animal Science, 40, 321-327. https://doi.org/10.1590/s141395962003000500002

61

Hansper, V. Y., Morton, A. J., Tims, S. G., Tingwell, C. I. W., Scott, A. F., & Sargood, D. G. (1993).

Cross sections and thermonuclear reaction rates for 51V(α, n)54Mn and 51V(α, p)54Cr. Nuclear

Physics, Section A, 551, 158-172. https://doi.org/10.1016/0375-9474(93)90309-L

Hermanne, A., Ignatyuk, A. v., Capote, R., Carlson, B. v., Engle, J. W., Kellett, M. A., Kibédi, T.,

Kim, G., Kondev, F. G., Hussain, M., Lebeda, O., Luca, A., Nagai, Y., Naik, H., Nichols, A. L.,

Nortier, F. M., Suryanarayana, S. V., Takács, S., Tárkányi, F. T., & Verpelli, M. (2018).

Reference Cross Sections for Charged-particle Monitor Reactions. Nuclear Data Sheets, 148,

338-382. https://doi.org/10.1016/j.nds.2018.02.009

Horiuchi, J., Takeda, M., Shibuya, H., Matsumoto, S., Hoshina, M., & Suzuki, S. (1991). Usefulness

of

198

Au grain implants in the treatment of oral and oropharyngeal cancer. Radiotherapy and

Oncology, 21, 29-38. https://doi.org/10.1016/0167-8140(91)90338-H

Hubbel, J. H., & Seltzer, S. M. (2004). Tables of X-Ray Mass Attenuation Coefficients and Mass

Energy-Absorption Coefficients (version 1.4). [Online] National Institute of Standards and

Technology, Gaithersburg, MD. https://dx.doi.org/10.18434/T4D01F

Iguchi, A., Amano, H., & Tanaka, S. (1960). (α, n) Cross Sections for 48Ti and 51V. Journal of the

Atomic Energy Society of Japan / Atomic Energy Society of Japan, 2, 682-684.

https://doi.org/10.3327/jaesj.2.682

International Atomic Energy Agency. (2003). Manual for Reactor Produced Radioisotopes (IAEATECDOC-1340) [Online]. URL https://www.iaea.org/publications/6407/manual-for-reactorproduced-radioisotopes

International Atomic Energy Agency. (2009a). Cyclotron Produced Radionuclides: Principles and

Practice

(IAEA,

Technical

Reports

Series

No.

465)

[Online].

URL

https://www.iaea.org/publications/7849/cyclotron-produced-radionuclides-principles-andpractice

International Atomic Energy Agency. (2009b). LiveChart of Nuclides [WWW Document]. URL

https://www-nds.iaea.org/livechart/

International Atomic Energy Agency. (2023). IAEA - Medical portal [WWW Document]. URL

https://www-nds.iaea.org/relnsd/vcharthtml/MEDVChart.html

Ismail, M. (1993). Measurement of excitation functions and mean projected recoil ranges of nuclei

in α-induced reactions on F, Al, V, Co and Re nuclei. Pramana, 40, 227-251.

https://doi.org/10.1007/BF02900190

Karvat, A., Duzenli, C., Ma, R., Paton, K., & Pickles, T. (2001). The treatment of choroidal melanoma

with

198

Au

plaque

brachytherapy.

Radiotherapy

https://doi.org/10.1016/S0167-8140(00)00334-0

62

and

Oncology,

59,

153-156.

Kassis, A. I. (2008). Therapeutic Radionuclides: Biophysical and Radiobiologic Principles. Seminars

in Nuclear Medicine, 38, 358–366. https://doi.org/10.1053/J.SEMNUCLMED.2008.05.002

Koning, A. J., Rochman, D., Sublet, J. C., Dzysiuk, N., Fleming, M., & van der Marck, S. (2019).

TENDL: Complete Nuclear Data Library for Innovative Nuclear Science and Technology.

Nuclear Data Sheets, 155, 1-55. https://doi.org/10.1016/j.nds.2019.01.002

Konishi, M., Fujita, M., Takeuchi, Y., Kubo, K., Imano, N., Nishibuchi, I., Murakami, Y.,

Shimabukuro, K., Wongratwanich, P., Verdonschot, R. G., Kakimoto, N., & Nagata, Y. (2021).

Treatment outcomes of real-time intraoral sonography-guided implantation technique of 198Au

grain brachytherapy for T1 and T2 tongue cancer. Journal of Radiation Research, 62, 871–876.

https://doi.org/10.1093/jrr/rrab059

Kostelnik, T. I., & Orvig, C. (2019). Radioactive Main Group and Rare Earth Metals for Imaging

and

Therapy.

In

Chemical

Reviews,

119,

902–956.

https://doi.org/10.1021/acs.chemrev.8b00294

Lawrence, E. O., & Livingston, M. S. (1932). The production of high-speed light ions without the

use of high voltages. Physical Review, 40, 19. https://doi.org/10.1103/PhysRev.40.19

Levkovski, V. N. (1991). Middle Mass Nuclides (A=40-100) Activation Cross Sections by Medium

Energy (E=10-50 MeV) Protons and Alpha-Particles. (Experiment and Systematics).

Mausner, L. F., Kolsky, K. L., Joshi, V., & Srivastava, S. C. (1998). Radionuclide development at

BNL for nuclear medicine therapy. Applied Radiation and Isotopes, 49, 285–294.

https://doi.org/10.1016/S0969-8043(97)00040-7

Meija, J., Coplen, T. B., Berglund, M., Brand, W. A., de Bièvre, P., Gröning, M., Holden, N. E.,

Irrgeher, J., Loss, R. D., Walczyk, T., & Prohaska, T. (2016). Atomic weights of the elements

2013

(IUPAC

Technical

Report).

Pure

and Applied

Chemistry,

88,

265-291.

https://doi.org/10.1515/pac-2015-0305

Michel, R., Brinkmann, G., & Stueck, R. (1983). Measurement and Hybrid Model Analysis of

Integral Excitation Functions for α-Induced Reactions on Vanadium and Manganese. Nuclear

Data for Science and Technology, 1, 599-602. https://doi.org/10.1007/978-94-009-7099-1_129

Murata, T., Aikawa, M., Saito, M., Ukon, N., Komori, Y., Haba, H., & Takács, S. (2019). Production

cross sections of Mo, Nb and Zr radioisotopes from α-induced reaction on

nat

Zr. Applied

Radiation and Isotopes, 144, 47–53. https://doi.org/10.1016/J.APRADISO.2018.11.012

Myers, W. G. (1979). Georg Charles de Hevesy: the father of nuclear medicine. Journal of Nuclear

Medicine, 20, 590.

National Nuclear Data Center. (2021). Nuclear structure and decay data on-line library, Nudat 3.0

[WWW Document]. URL https://www.nndc.bnl.gov/nudat3

63

Neuzil, E. F., & Lindsay, R. H. (1963). Emission of 7Be and competition processes at 30 to 42 MeV.

Physical Review, 131, 1697-1701. https://doi.org/10.1103/PhysRev.131.1697

Otuka, N., & Takács, S. (2015). Definitions of radioisotope thick target yields. Radiochimica Acta,

103, 1-6. https://doi.org/10.1515/ract-2013-2234

Peng, X., He, F., & Long, X. (1999). Excitation functions for α-induced reactions on vanadium.

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with

Materials and Atoms, 152, 432-436. https://doi.org/10.1016/S0168-583X(99)00179-2

Pijarowska-Kruszyna, J., Pocięgiel, M., & Mikołajczak, R. (2022). Radionuclide generators. Nuclear

Medicine and Molecular Imaging, 1, 66–78. https://doi.org/10.1016/B978-0-12-8229606.00005-3

Qaim, S. M. (2004). Use of cyclotrons in medicine. Radiation Physics and Chemistry, 71, 917–926.

https://doi.org/10.1016/J.RADPHYSCHEM.2004.04.124

Qaim, S. M. (2012). The present and future of medical radionuclide production. Radiochimica Acta,

100, 635–651. https://doi.org/10.1524/ract.2012.1966

Qaim, S. M., Scholten, B., & Neumaier, B. (2018). New developments in the production of

theranostic pairs of radionuclides. In Journal of Radioanalytical and Nuclear Chemistry, 318,

1493–1509. https://doi.org/10.1007/s10967-018-6238-x

Rama, R. J., Mohan Rao, A. V., Mukherjee, S., Upadhyay, R., Singh, N. L., Agarwal, S., Chaturvedi,

L., & Singh, P. P. (1987). Non-equilibrium effects in alpha-particle-induced reactions in light,

medium and heavy nuclei up to 120 MeV. Journal of Physics G: Nuclear Physics, 13, 535-542.

https://doi.org/10.1088/0305-4616/13/4/017

Ramogida, C. F., & Orvig, C. (2013). Tumour targeting with radiometals for diagnosis and therapy.

Chemical Communications, 49, 4720-4739. https://doi.org/10.1039/c3cc41554f

Showaimy, H., Solieman, A. H. M., Hamid, A. S. A., Khalaf, A. M., & Saleh, Z. A. (2019).

Measurements of activation cross sections for proton induced reactions on natural platinum

targets leading to the formation of gold radioisotopes. Radiation Physics and Chemistry, 157,

97-101. https://doi.org/10.1016/j.radphyschem.2018.12.024

Singh, N. L., Agarwal, S., & Rao, J. R. (1993). Excitation function for α-particle-induced reactions

in light-mass nuclei. Canadian Journal of Physics, 71, 115-121. https://doi.org/10.1139/p93017

Singh, N. L., Mukherjee, S., Mohan Rao, A. V., Chaturvedi, L., & Singh, P. P. (1995). Effects of preequilibrium nucleon emission on excitation functions of various reactions in vanadium induced

by alpha particles. Journal of Physics G: Nuclear and Particle Physics, 21, 399-410.

https://doi.org/10.1088/0954-3899/21/3/014

64

Smith, S. V., McCutchan, E., Gürdal, G., Lister, C., Muench, L., Nino, M., Sonzogni, A., Herman,

M., Nobre, G., Cullen, C., Chillery, T., Chowdury, P., & Harding, R. (2017). Production of

platinum radioisotopes at Brookhaven Linac Isotope Producer (BLIP). EPJ Web of Conferences,

146, 09029. https://doi.org/10.1051/epjconf/201714609029

S.M. Qaim, F. Tárkányi, & R. Capote. (2012). Nuclear Data for the Production of Therapeutic

Radionuclides

(IAEA,

Technical

Reports

Series-473).

[WWW

Document].

URL

https://www.iaea.org/publications/8522/nuclear-data-for-the-production-of-therapeuticradionuclides

Sonzogni, A. A., Romo, A. S. M. A., Frosch, W. R., & Nassiff, S. J. (1992). A code to determine the

energy distribution, the incident energy and the flux of a beam of light ions into a stack of foils.

Computer

Physics

Communications,

69,

429–438.

https://doi.org/10.1016/0010-

4655(92)90181-W

Sonzogni, A. A., Romo, A. S. M. A., Mosca, H. O., & Nassiff, S. J. (1993). Alpha and deuteron

induced reactions on vanadium. Journal of Radioanalytical and Nuclear Chemistry Articles,

170, 143–156. https://doi.org/10.1007/BF02134585

Sonzogni, A., & Pritychenko, B. (2003). Q-value Calculator (QCalc). NNDC, Brookhaven National

Laboratory [WWW Document]. URL https://www.nndc.bnl.gov/qcalc/

Srivastava, S. C. (2012). Paving the Way to Personalized Medicine: Production of Some Promising

Theragnostic Radionuclides at Brookhaven National Laboratory. Seminars in Nuclear Medicine,

42, 151–163. https://doi.org/10.1053/J.SEMNUCLMED.2011.12.004

Starovoitova, V. N., Tchelidze, L., & Wells, D. P. (2014). Production of medical radioisotopes with

linear

accelerators.

Applied

Radiation

and

Isotopes,

85,

39–44.

https://doi.org/10.1016/J.APRADISO.2013.11.122

Tárkányi, F., Ditrói, F., Takács, S., Csikai, J., Hermanne, A., Uddin, M. S., Hagiwara, M., Baba, M.,

Shubin, Y. N., & Dityuk, A. I. (2004b). Activation cross-sections of light ion induced nuclear

reactions on platinum: Proton induced reactions. Nuclear Instruments and Methods in Physics

Research, Section B: Beam Interactions with Materials and Atoms, 226, 473-489.

https://doi.org/10.1016/j.nimb.2004.06.042

Tárkányi, F., Hermanne, A., Takács, S., Shubin, Y. N., & Dityuk, A. I. (2004a). Cross sections for

production of the therapeutic radioisotopes

reactions

on

198

Pt.

198

Au and

Radiochimica

199

Au in proton and deuteron induced

Acta,

92,

223-228.

https://doi.org/10.1524/ract.92.4.223.35588

Tárkányi, F. T., Ignatyuk, A. V., Hermanne, A., Capote, R., Carlson, B. v., Engle, J. W., Kellett, M.

A., Kibédi, T., Kim, G. N., Kondev, F. G., Hussain, M., Lebeda, O., Luca, A., Nagai, Y., Naik,

65

H., Nichols, A. L., Nortier, F. M., Suryanarayana, S. v., Takács, S., & Verpelli, M. (2019).

Recommended nuclear data for medical radioisotope production: diagnostic positron emitters.

Journal

of

Radioanalytical

and

Nuclear

Chemistry,

319,

533–666.

https://doi.org/10.1007/s10967-018-6380-5

Tárkányi, F, Takács S, Gul K, Hermanne A, Mustafa M.G, Nortier M, Obložinský P, Qaim S.M,

Scholten B, Shubin Y.N, & Yousiang Z. (2007). Charged particle cross-section database for

medical radioisotope production (updated version). IAEA-TECDOC-1211 [WWW Document].

URL https://www-nds.iaea.org/medical/medical-old/monitor_reactions.html

Van Dort, M., Rehemtulla, A., & Ross, B. (2008). PET and SPECT Imaging of Tumor Biology: New

Approaches Towards Oncology Drug Discovery and Development. Current Computer AidedDrug Design, 4, 46 - 53. https://doi.org/10.2174/157340908783769265

Vlieks, A. E., Morgan, J. F., & Blatt, S. L. (1974). Total cross sections for some (α, n) and (α, p)

reactions in medium-weight nuclei. Nuclear Physics, Section A, 224, 492-502.

https://doi.org/10.1016/0375-9474(74)90551-X

Vonach, H., Haight, R. C., & Winkler, G. (1983). (α, n) and total α-reaction cross sections for 48Ti

and 51V. Physical Review C, 28, 2278-2285. https://doi.org/10.1103/PhysRevC.28.2278

Watanabe, T., Fujimaki, M., Fukunishi, N., Imao, H., Kamigaito, O., Kase, M., Komiyama, M.,

Sakamoto, N., Suda, K., Wakasugi, M., & Yamada, K. (2014). Beam energy and longitudinal

beam profile measurement system at the RIBF. IPAC 2014: Proceedings of the 5th International

Particle Accelerator Conference, 3566-3568. doi:10.18429/JACoW-IPAC2014-THPME136

Werner, R. A., Bluemel, C., Allen-Auerbach, M. S., Higuchi, T., & Herrmann, K. (2015). 68Galliumand 90Yttrium-/177Lutetium: “theranostic twins” for diagnosis and treatment of NETs. Annals of

Nuclear Medicine, 29, 1–7. https://doi.org/10.1007/s12149-014-0898-6

Ziegler, J. F., Ziegler, M. D., & Biersack, J. P. (2010). SRIM - The stopping and range of ions in

matter (2010). Nuclear Instruments and Methods in Physics Research, Section B: Beam

Interactions

with

Materials

and

https://doi.org/10.1016/j.nimb.2010.02.091

66

Atoms,

268,

1818-1823.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る