リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Perturbative unitarity in quasi-single field inflation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Perturbative unitarity in quasi-single field inflation

Kim, Suro Noumi, Toshifumi Takeuchi, Keito Zhou, Siyi 神戸大学

2021.07.06

概要

We study implications of perturbative unitarity for quasi-single field inflation with the inflaton and one massive scalar. Analyzing high energy scattering, we show that non-Gaussianities with |fNL| ≳ 1 cannot be realized without turning on interactions which violate unitarity at a high energy scale. Then, we provide a relation between fNL and the scale of new physics that is required for UV completion. In particular we find that for the Hubble scale H ≳ × 10^9 GeV, Planck suppressed operators can easily generate too large non-Gaussanities and so it is hard to realize successful quasi-single field inflation without introducing a mechanism to suppress quantum gravity corrections. Also we generalize the analysis to the regime where the isocurvature mode is heavy and the inflationary dynamics is captured by the inflaton effective theory. Requiring perturbative unitarity of the two-scalar UV models with the inflaton and one heavy scalar, we clarify the parameter space of the P(X, ϕ) model which is UV completable by a single heavy scalar.

この論文で使われている画像

参考文献

[1] B.W. Lee, C. Quigg and H.B. Thacker, Weak Interactions at Very High-Energies: The Role

of the Higgs Boson Mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].

[2] B.W. Lee, C. Quigg and H.B. Thacker, The Strength of Weak Interactions at Very

High-Energies and the Higgs Boson Mass, Phys. Rev. Lett. 38 (1977) 883 [INSPIRE].

[3] D.A. Dicus and V.S. Mathur, Upper bounds on the values of masses in unified gauge

theories, Phys. Rev. D 7 (1973) 3111 [INSPIRE].

[4] M.S. Chanowitz and M.K. Gaillard, The TeV Physics of Strongly Interacting W’s and Z’s,

Nucl. Phys. B 261 (1985) 379 [INSPIRE].

[5] CMS collaboration, Observation of a New Boson with Mass Near 125 GeV in pp Collisions

at s = 7 and 8 TeV, JHEP 06 (2013) 081 [arXiv:1303.4571] [INSPIRE].

[6] CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS

Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

[7] ATLAS collaboration, Observation of a new particle in the search for the Standard Model

Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1

[arXiv:1207.7214] [INSPIRE].

[8] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field

inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

[9] R.N. Lerner and J. McDonald, A Unitarity-Conserving Higgs Inflation Model, Phys. Rev. D

82 (2010) 103525 [arXiv:1005.2978] [INSPIRE].

[10] G.F. Giudice and H.M. Lee, Unitarizing Higgs Inflation, Phys. Lett. B 694 (2011) 294

[arXiv:1010.1417] [INSPIRE].

– 26 –

JHEP07(2021)018

from which it is obvious in particular that non-renormalizable interactions do not appear

when α = λ3 = λ4 = 1 is satisfied.

In the main text, we provided Feynman diagrams before the field redefinition for

illustration. However, the expressions (B.4), (B.5), and (B.8) simplify the computation of

scattering amplitudes a lot (the results are of course invariant under field redefinition).

[11] M. Atkins and X. Calmet, Remarks on Higgs Inflation, Phys. Lett. B 697 (2011) 37

[arXiv:1011.4179] [INSPIRE].

[12] X. Calmet and R. Casadio, Self-healing of unitarity in Higgs inflation, Phys. Lett. B 734

(2014) 17 [arXiv:1310.7410] [INSPIRE].

[13] J.L.F. Barbón, J.A. Casas, J. Elias-Miro and J.R. Espinosa, Higgs Inflation as a Mirage,

JHEP 09 (2015) 027 [arXiv:1501.02231] [INSPIRE].

[14] J. Fumagalli, S. Mooij and M. Postma, Unitarity and predictiveness in new Higgs inflation,

JHEP 03 (2018) 038 [arXiv:1711.08761] [INSPIRE].

[16] Y. Ema, K. Mukaida and J. van de Vis, Higgs inflation as nonlinear σ model and scalaron

as its σ-meson, JHEP 11 (2020) 011 [arXiv:2002.11739] [INSPIRE].

[17] S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566

[INSPIRE].

[18] W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and

Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

[19] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the

Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

[20] B. Grinstein and M. Trott, A Higgs-Higgs bound state due to new physics at a TeV, Phys.

Rev. D 76 (2007) 073002 [arXiv:0704.1505] [INSPIRE].

[21] LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs

Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922

[INSPIRE].

[22] I. Brivio and M. Trott, The Standard Model as an Effective Field Theory, Phys. Rept. 793

(2019) 1 [arXiv:1706.08945] [INSPIRE].

[23] S. Chang and M.A. Luty, The Higgs Trilinear Coupling and the Scale of New Physics,

JHEP 03 (2020) 140 [arXiv:1902.05556] [INSPIRE].

[24] R. Nagai, M. Tanabashi, K. Tsumura and Y. Uchida, Symmetry and geometry in a

generalized Higgs effective field theory: Finiteness of oblique corrections versus perturbative

unitarity, Phys. Rev. D 100 (2019) 075020 [arXiv:1904.07618] [INSPIRE].

[25] X. Chen and Y. Wang, Quasi-Single Field Inflation and Non-Gaussianities, JCAP 04

(2010) 027 [arXiv:0911.3380] [INSPIRE].

[26] D. Baumann and D. Green, Signatures of Supersymmetry from the Early Universe, Phys.

Rev. D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].

[27] T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single

field inflation and effects of heavy fields, JHEP 06 (2013) 051 [arXiv:1211.1624] [INSPIRE].

[28] N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043

[INSPIRE].

[29] X. Chen and Y. Wang, Large non-Gaussianities with Intermediate Shapes from

Quasi-Single Field Inflation, Phys. Rev. D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].

– 27 –

JHEP07(2021)018

[15] H.M. Lee, Light inflaton completing Higgs inflation, Phys. Rev. D 98 (2018) 015020

[arXiv:1802.06174] [INSPIRE].

[30] V. Assassi, D. Baumann and D. Green, On Soft Limits of Inflationary Correlation

Functions, JCAP 11 (2012) 047 [arXiv:1204.4207] [INSPIRE].

[31] E. Sefusatti, J.R. Fergusson, X. Chen and E.P.S. Shellard, Effects and Detectability of

Quasi-Single Field Inflation in the Large-Scale Structure and Cosmic Microwave

Background, JCAP 08 (2012) 033 [arXiv:1204.6318] [INSPIRE].

[32] J. Norena, L. Verde, G. Barenboim and C. Bosch, Prospects for constraining the shape of

non-Gaussianity with the scale-dependent bias, JCAP 08 (2012) 019 [arXiv:1204.6324]

[INSPIRE].

[34] J. Liu, Y. Wang and S. Zhou, Inflation with Massive Vector Fields, JCAP 08 (2015) 033

[arXiv:1502.05138] [INSPIRE].

[35] E. Dimastrogiovanni, M. Fasiello and M. Kamionkowski, Imprints of Massive Primordial

Fields on Large-Scale Structure, JCAP 02 (2016) 017 [arXiv:1504.05993] [INSPIRE].

[36] F. Schmidt, N.E. Chisari and C. Dvorkin, Imprint of inflation on galaxy shape correlations,

JCAP 10 (2015) 032 [arXiv:1506.02671] [INSPIRE].

[37] X. Chen, M.H. Namjoo and Y. Wang, Quantum Primordial Standard Clocks, JCAP 02

(2016) 013 [arXiv:1509.03930] [INSPIRE].

[38] B. Bonga, S. Brahma, A.-S. Deutsch and S. Shandera, Cosmic variance in inflation with

two light scalars, JCAP 05 (2016) 018 [arXiv:1512.05365] [INSPIRE].

[39] L.V. Delacretaz, T. Noumi and L. Senatore, Boost Breaking in the EFT of Inflation, JCAP

02 (2017) 034 [arXiv:1512.04100] [INSPIRE].

[40] R. Flauger, M. Mirbabayi, L. Senatore and E. Silverstein, Productive Interactions: heavy

particles and non-Gaussianity, JCAP 10 (2017) 058 [arXiv:1606.00513] [INSPIRE].

[41] H. Lee, D. Baumann and G.L. Pimentel, Non-Gaussianity as a Particle Detector, JHEP 12

(2016) 040 [arXiv:1607.03735] [INSPIRE].

[42] L.V. Delacretaz, V. Gorbenko and L. Senatore, The Supersymmetric Effective Field Theory

of Inflation, JHEP 03 (2017) 063 [arXiv:1610.04227] [INSPIRE].

[43] P.D. Meerburg, M. Münchmeyer, J.B. Muñoz and X. Chen, Prospects for Cosmological

Collider Physics, JCAP 03 (2017) 050 [arXiv:1610.06559] [INSPIRE].

[44] X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model Background of the Cosmological

Collider, Phys. Rev. Lett. 118 (2017) 261302 [arXiv:1610.06597] [INSPIRE].

[45] X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model Mass Spectrum in Inflationary

Universe, JHEP 04 (2017) 058 [arXiv:1612.08122] [INSPIRE].

[46] H. An, M. McAneny, A.K. Ridgway and M.B. Wise, Quasi Single Field Inflation in the

non-perturbative regime, JHEP 06 (2018) 105 [arXiv:1706.09971] [INSPIRE].

[47] X. Tong, Y. Wang and S. Zhou, On the Effective Field Theory for Quasi-Single Field

Inflation, JCAP 11 (2017) 045 [arXiv:1708.01709] [INSPIRE].

[48] A.V. Iyer, S. Pi, Y. Wang, Z. Wang and S. Zhou, Strongly Coupled Quasi-Single Field

Inflation, JCAP 01 (2018) 041 [arXiv:1710.03054] [INSPIRE].

– 28 –

JHEP07(2021)018

[33] R. Emami, Spectroscopy of Masses and Couplings during Inflation, JCAP 04 (2014) 031

[arXiv:1311.0184] [INSPIRE].

[49] H. An, M. McAneny, A.K. Ridgway and M.B. Wise, Non-Gaussian Enhancements of

Galactic Halo Correlations in Quasi-Single Field Inflation, Phys. Rev. D 97 (2018) 123528

[arXiv:1711.02667] [INSPIRE].

[50] S. Kumar and R. Sundrum, Heavy-Lifting of Gauge Theories By Cosmic Inflation, JHEP

05 (2018) 011 [arXiv:1711.03988] [INSPIRE].

[51] S. Riquelme M., Non-Gaussianities in a two-field generalization of Natural Inflation, JCAP

04 (2018) 027 [arXiv:1711.08549] [INSPIRE].

[52] R. Saito and T. Kubota, Heavy Particle Signatures in Cosmological Correlation Functions

with Tensor Modes, JCAP 06 (2018) 009 [arXiv:1804.06974] [INSPIRE].

[54] E. Dimastrogiovanni, M. Fasiello and G. Tasinato, Probing the inflationary particle content:

extra spin-2 field, JCAP 08 (2018) 016 [arXiv:1806.00850] [INSPIRE].

[55] L. Bordin, P. Creminelli, A. Khmelnitsky and L. Senatore, Light Particles with Spin in

Inflation, JCAP 10 (2018) 013 [arXiv:1806.10587] [INSPIRE].

[56] N. Arkani-Hamed, D. Baumann, H. Lee and G.L. Pimentel, The Cosmological Bootstrap:

Inflationary Correlators from Symmetries and Singularities, JHEP 04 (2020) 105

[arXiv:1811.00024] [INSPIRE].

[57] S. Kumar and R. Sundrum, Seeing Higher-Dimensional Grand Unification In Primordial

Non-Gaussianities, JHEP 04 (2019) 120 [arXiv:1811.11200] [INSPIRE].

[58] G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Shapes of gravity: Tensor

non-Gaussianity and massive spin-2 fields, JHEP 10 (2019) 182 [arXiv:1812.07571]

[INSPIRE].

[59] Y.-P. Wu, Higgs as heavy-lifted physics during inflation, JHEP 04 (2019) 125

[arXiv:1812.10654] [INSPIRE].

[60] W.Z. Chua, Q. Ding, Y. Wang and S. Zhou, Imprints of Schwinger Effect on Primordial

Spectra, JHEP 04 (2019) 066 [arXiv:1810.09815] [INSPIRE].

[61] Y. Wang, Y.-P. Wu, J. Yokoyama and S. Zhou, Hybrid Quasi-Single Field Inflation, JCAP

07 (2018) 068 [arXiv:1804.07541] [INSPIRE].

[62] M. McAneny and A.K. Ridgway, New Shapes of Primordial Non-Gaussianity from

Quasi-Single Field Inflation with Multiple Isocurvatons, Phys. Rev. D 100 (2019) 043534

[arXiv:1903.11607] [INSPIRE].

[63] L. Li, T. Nakama, C.M. Sou, Y. Wang and S. Zhou, Gravitational Production of Superheavy

Dark Matter and Associated Cosmological Signatures, JHEP 07 (2019) 067

[arXiv:1903.08842] [INSPIRE].

[64] S. Kim, T. Noumi, K. Takeuchi and S. Zhou, Heavy Spinning Particles from Signs of

Primordial Non-Gaussianities: Beyond the Positivity Bounds, JHEP 12 (2019) 107

[arXiv:1906.11840] [INSPIRE].

[65] C. Sleight, A Mellin Space Approach to Cosmological Correlators, JHEP 01 (2020) 090

[arXiv:1906.12302] [INSPIRE].

[66] M. Biagetti, The Hunt for Primordial Interactions in the Large Scale Structures of the

Universe, Galaxies 7 (2019) 71 [arXiv:1906.12244] [INSPIRE].

– 29 –

JHEP07(2021)018

[53] G. Cabass, E. Pajer and F. Schmidt, Imprints of Oscillatory Bispectra on Galaxy

Clustering, JCAP 09 (2018) 003 [arXiv:1804.07295] [INSPIRE].

[67] C. Sleight and M. Taronna, Bootstrapping Inflationary Correlators in Mellin Space, JHEP

02 (2020) 098 [arXiv:1907.01143] [INSPIRE].

[68] Y. Welling, Simple, exact model of quasisingle field inflation, Phys. Rev. D 101 (2020)

063535 [arXiv:1907.02951] [INSPIRE].

[69] S. Alexander, S.J. Gates, L. Jenks, K. Koutrolikos and E. McDonough, Higher Spin

Supersymmetry at the Cosmological Collider: Sculpting SUSY Rilles in the CMB, JHEP 10

(2019) 156 [arXiv:1907.05829] [INSPIRE].

[70] S. Lu, Y. Wang and Z.-Z. Xianyu, A Cosmological Higgs Collider, JHEP 02 (2020) 011

[arXiv:1907.07390] [INSPIRE].

[72] A. Hook, J. Huang and D. Racco, Minimal signatures of the Standard Model in

non-Gaussianities, Phys. Rev. D 101 (2020) 023519 [arXiv:1908.00019] [INSPIRE].

[73] B. Scheihing Hitschfeld, Revealing the Structure of the Inflationary Landscape through

Primordial non-Gaussianity, other thesis, (2019) [arXiv:1909.11223] [INSPIRE].

[74] D. Baumann, C. Duaso Pueyo, A. Joyce, H. Lee and G.L. Pimentel, The cosmological

bootstrap: weight-shifting operators and scalar seeds, JHEP 12 (2020) 204

[arXiv:1910.14051] [INSPIRE].

[75] L.-T. Wang and Z.-Z. Xianyu, In Search of Large Signals at the Cosmological Collider,

JHEP 02 (2020) 044 [arXiv:1910.12876] [INSPIRE].

[76] T. Liu, X. Tong, Y. Wang and Z.-Z. Xianyu, Probing P and CP-violations on the

Cosmological Collider, JHEP 04 (2020) 189 [arXiv:1909.01819] [INSPIRE].

[77] D.-G. Wang, On the inflationary massive field with a curved field manifold, JCAP 01

(2020) 046 [arXiv:1911.04459] [INSPIRE].

[78] Y. Wang and Y. Zhu, Cosmological Collider Signatures of Massive Vectors from

Non-Gaussian Gravitational Waves, JCAP 04 (2020) 049 [arXiv:2001.03879] [INSPIRE].

[79] L. Li, S. Lu, Y. Wang and S. Zhou, Cosmological Signatures of Superheavy Dark Matter,

JHEP 07 (2020) 231 [arXiv:2002.01131] [INSPIRE].

[80] D. Baumann, C. Duaso Pueyo, A. Joyce, H. Lee and G.L. Pimentel, The Cosmological

Bootstrap: Spinning Correlators from Symmetries and Factorization, arXiv:2005.04234

[INSPIRE].

[81] K. Kogai, K. Akitsu, F. Schmidt and Y. Urakawa, Galaxy imaging surveys as spin-sensitive

detector for cosmological colliders, JCAP 03 (2021) 060 [arXiv:2009.05517] [INSPIRE].

[82] S. Aoki and M. Yamaguchi, Disentangling mass spectra of multiple fields in cosmological

collider, JHEP 04 (2021) 127 [arXiv:2012.13667] [INSPIRE].

[83] N. Maru and A. Okawa, Non-Gaussianity from X, Y gauge bosons in Cosmological Collider

Physics, arXiv:2101.10634 [INSPIRE].

[84] X. Chen, M.-x. Huang, S. Kachru and G. Shiu, Observational signatures and

non-Gaussianities of general single field inflation, JCAP 01 (2007) 002 [hep-th/0605045]

[INSPIRE].

[85] T.D. Brennan, F. Carta and C. Vafa, The String Landscape, the Swampland, and the

Missing Corner, PoS TASI2017 (2017) 015 [arXiv:1711.00864] [INSPIRE].

– 30 –

JHEP07(2021)018

[71] A. Hook, J. Huang and D. Racco, Searches for other vacua. Part II. A new Higgstory at the

cosmological collider, JHEP 01 (2020) 105 [arXiv:1907.10624] [INSPIRE].

[86] E. Palti, The Swampland: Introduction and Review, Fortsch. Phys. 67 (2019) 1900037

[arXiv:1903.06239] [INSPIRE].

[87] D. Baumann and D. Green, Equilateral Non-Gaussianity and New Physics on the Horizon,

JCAP 09 (2011) 014 [arXiv:1102.5343] [INSPIRE].

[88] D. Baumann, D. Green and R.A. Porto, B-modes and the Nature of Inflation, JCAP 01

(2015) 016 [arXiv:1407.2621] [INSPIRE].

[89] M. Koehn, J.-L. Lehners and B. Ovrut, Nonsingular bouncing cosmology: Consistency of

the effective description, Phys. Rev. D 93 (2016) 103501 [arXiv:1512.03807] [INSPIRE].

[91] C. de Rham and S. Melville, Unitary null energy condition violation in P(X) cosmologies,

Phys. Rev. D 95 (2017) 123523 [arXiv:1703.00025] [INSPIRE].

[92] J. Fumagalli, M. Postma and M. Van Den Bout, Matching and running sensitivity in

non-renormalizable in ationary models, JHEP 09 (2020) 114 [arXiv:2005.05905]

[INSPIRE].

[93] X. Chen and Y. Wang, Quasi-Single Field Inflation with Large Mass, JCAP 09 (2012) 021

[arXiv:1205.0160] [INSPIRE].

[94] S. Pi and M. Sasaki, Curvature Perturbation Spectrum in Two-field Inflation with a

Turning Trajectory, JCAP 10 (2012) 051 [arXiv:1205.0161] [INSPIRE].

[95] D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic

microwave background anisotropy?, Phys. Rev. Lett. 78 (1997) 1861 [hep-ph/9606387]

[INSPIRE].

[96] M. Tristram et al., Planck constraints on the tensor-to-scalar ratio, Astron. Astrophys. 647

(2021) A128 [arXiv:2010.01139] [INSPIRE].

[97] C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The Effective Field

Theory of Inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].

[98] A.J. Tolley and M. Wyman, The Gelaton Scenario: Equilateral non-Gaussianity from

multi-field dynamics, Phys. Rev. D 81 (2010) 043502 [arXiv:0910.1853] [INSPIRE].

[99] J.-O. Gong, S. Pi and M. Sasaki, Equilateral non-Gaussianity from heavy fields, JCAP 11

(2013) 043 [arXiv:1306.3691] [INSPIRE].

[100] Planck collaboration, Planck 2018 results. IX. Constraints on primordial non-Gaussianity,

Astron. Astrophys. 641 (2020) A9 [arXiv:1905.05697] [INSPIRE].

– 31 –

JHEP07(2021)018

[90] D. Baumann, D. Green, H. Lee and R.A. Porto, Signs of Analyticity in Single-Field

Inflation, Phys. Rev. D 93 (2016) 023523 [arXiv:1502.07304] [INSPIRE].

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る