リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Discovery of Bis-sulfonamides as Novel Inhibitors of Mitochondrial NADH-Quinone Oxidoreductase (Complex I)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Discovery of Bis-sulfonamides as Novel Inhibitors of Mitochondrial NADH-Quinone Oxidoreductase (Complex I)

Tsuji, Atsuhito Masuya, Takahiro Arichi, Norihito Inuki, Shinsuke Murai, Masatoshi Miyoshi, Hideto Ohno, Hiroaki 京都大学 DOI:10.1021/acsmedchemlett.2c00504

2023.02.09

概要

Mitochondrial oxidative phosphorylation (OXPHOS) is an essential cellular metabolic process that generates ATP. The enzymes involved in OXPHOS are considered to be promising druggable targets. Through screening of an in-house synthetic library with bovine heart submitochondrial particles, we identified a unique symmetric bis-sulfonamide, KPYC01112 (1) as an inhibitor targeting NADH-quinone oxidoreductase (complex I). Structural modifications of KPYC01112 (1) led to the discovery of the more potent inhibitors 32 and 35 possessing long alkyl chains (IC₅₀ = 0.017 and 0.014 μM, respectively). A photoaffinity labeling experiment using a newly synthesized photoreactive bis-sulfonamide ([¹²⁵I]-43) revealed that it binds to the 49-kDa, PSST, and ND1 subunits which make up the quinone-accessing cavity of complex I.

この論文で使われている画像

参考文献

(1) Xu, Y.; Xue, D.; Bankhead, A.; Neamati, N. Why All the Fuss

about Oxidative Phosphorylation (OXPHOS)? J. Med. Chem. 2020, 63,

14276–14307. https://doi.org/10.1021/acs.jmedchem.0c01013

(2) Carter, J. L.; Hege, K.; Kalpage, H. A.; Edwards, H.; Hüttemann,

M.; Taub, J. W.; Ge, Y. Targeting Mitochondrial Respiration for the

Treatment of Acute Myeloid Leukemia. Biochem. Pharmacol. 2020,

182, 114253. https://doi.org/10.1016/j.bcp.2020.114253

(3) Carter, J. L.; Hege, K.; Yang, J.; Kalpage, H. A.; Su, Y.; Edwards,

H.; Hüttemann, M.; Taub, J. W.; Ge, Y. Targeting Multiple Signaling

Pathways: The New Approach to Acute Myeloid Leukemia Therapy.

Signal

Transduct.

Target

Ther.

2020,

5,

288.

https://doi.org/10.1038/s41392-020-00361-x

(4) van Gisbergen, M. W.; Zwilling, E.; Dubois, L. J. Metabolic Rewiring in Radiation Oncology Toward Improving the Therapeutic Ratio.

Front.

Oncol.

2021,

11,

653621.

https://doi.org/10.3389/fonc.2021.653621

(5) Tan, Y. Q.; Zhang, X.; Zhang, S.; Zhu, T.; Garg, M.; Lobie, P.

E.; Pandey, V. Mitochondria: The Metabolic Switch of Cellular Oncogenic Transformation. Biochim. Biophys. Acta Rev. Cancer 2021, 1876,

188534. https://doi.org/10.1016/j.bbcan.2021.188534

(6) Bueno, M. J.; Ruiz-Sepulveda, J. L.; Quintela-Fandino, M. Mitochondrial Inhibition: A Treatment Strategy in Cancer? Curr. Oncol.

Rep. 2021, 23, 49. https://doi.org/10.1007/s11912-021-01033-x

(7) Xue, D.; Xu, Y.; Kyani, A.; Roy, J.; Dai, L.; Sun, D.; Neamati,

N. Discovery and Lead Optimization of Benzene-1,4-Disulfonamides

as Oxidative Phosphorylation Inhibitors. J. Med. Chem. 2022, 65, 343–

368. https://doi.org/10.1021/acs.jmedchem.1c01509

(8) Xue, D.; Xu, Y.; Kyani, A.; Roy, J.; Dai, L.; Sun, D.; Neamati,

N. Multiparameter Optimization of Oxidative Phosphorylation Inhibitors for the Treatment of Pancreatic Cancer. J. Med. Chem. 2022, 65,

3404–3419. https://doi.org/10.1021/acs.jmedchem.1c01934

(9) Mowat, J.; Ehrmann, A. H. M.; Christian, S.; Sperl, C.; Menz,

S.; Günther, J.; Hillig, R. C.; Bauser, M.; Schwede, W. Identification

of the Highly Active, Species Cross-Reactive Complex I Inhibitor

BAY-179. ACS Med. Chem. Lett. 2022, 13, 348–357.

https://doi.org/10.1021/acsmedchemlett.1c00666

(10) Ibuka, T.; Nakai, K.; Habashita, H.; Hotta, Y.; Otaka, A.; Tamamura, H.; Fujii, N.; Mimura, N.; Miwa, Y.; Chounan, Y.; Yamamoto,

Y. Aza-Payne Rearrangement of Activated 2-Aziridinemethanols and

2,3-Epoxy Amines under Basic Conditions. J. Org. Chem. 1995, 60,

2044–2058. https://doi.org/10.1021/jo00112a028

(11) Benneche, T.; Strande, P.; Undheim, K. A New Synthesis of

Chloromethyl Benzyl Ethers. Synthesis 1983, 762–763.

https://doi.org/10.1055/s-1983-30506

(12) Yamada, K.; Kato, K.; Nagase, H.; Hirata, Y. Protection of Tertiary Hydroxyl Groups as Methylthiomethyl Ethers. Tetrahedron Lett.

1976, 17, 65–66. https://doi.org/10.1016/S0040-4039(00)71324-4

(13) Abe, M.; Nakano, M.; Kosaka, A.; Miyoshi, H. Syntheses of

Photoreactive Cardiolipins for a Photoaffinity Labeling Study. Tetrahedron

Lett.

2015,

56,

2258–2261.

https://doi.org/10.1016/j.tetlet.2015.03.056

(14) Murai, M.; Ishihara, A.; Nishioka, T.; Yagi, T.; Miyoshi, H. The

ND1 Subunit Constructs the Inhibitor Binding Domain in Bovine Heart

Mitochondrial Complex I. Biochemistry 2007, 46, 6409–6416.

https://doi.org/10.1021/bi7003697

(15) Baradaran, R.; Berrisford, J. M.; Minhas, G. S.; Sazanov, L. A.

Crystal Structure of the Entire Respiratory Complex I. Nature 2013,

494, 443–448. https://doi.org/10.1038/nature11871

(16) Zickermann, V.; Wirth, C.; Nasiri, H.; Siegmund, K.; Schwalbe,

H.; Hunte, C.; Brandt, U. Mechanistic Insight from the Crystal Structure of Mitochondrial Complex I. Science 2015, 347, 44–49.

https://doi.org/10.1126/science.1259859

(17) Zhu, J.; Vinothkumar, K. R.; Hirst, J. Structure of Mammalian

Respiratory Complex I. Nature 2016, 536, 354–358.

https://doi.org/10.1038/nature19095

(18) Blaza, J. N.; Vinothkumar, K. R.; Hirst, J. Structure of the Deactive State of Mammalian Respiratory Complex I. Structure 2018, 26,

312–319. https://doi.org/10.1016/j.str.2017.12.014

(19) Pravda, L.; Sehnal, D.; Toušek, D.; Navrátilová, V.; Bazgier,

V.; Berka, K.; Svobodová Vařeková, R.; Koča, J.; Otyepka, M.

MOLEonline: A Web-Based Tool for Analyzing Channels, Tunnels

and Pores. Nucleic Acids Res. 2018, 46, W368–W373.

https://doi.org/10.1093/nar/gky309

TOC Graphic

KPYC01112 (1)

IC 50 = 0.87 μM

Screening hit

SAR studies

O S

O S

32: IC 50 = 0.017 μM

O S

O S

35: IC 50 = 0.014 μM

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る