リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「MAIR-II deficiency ameliorates cardiac dysfunction post-myocardial infarction by suppressing TLR9-mediated pro-inflammatory macrophage activation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

MAIR-II deficiency ameliorates cardiac dysfunction post-myocardial infarction by suppressing TLR9-mediated pro-inflammatory macrophage activation

米林, 沙織 筑波大学 DOI:10.15068/0002000725

2021.07.28

概要

Purpose: Myocardial infarction (MI) is one of the highest causes of mortality as a result of ischemic cardiovascular disease. In the post-MI response, macrophages infiltrate the site of injury leading to inflammation, adverse cardiac remodeling, and heart failure. However, the underlying mechanisms in regulating macrophage activation in the post-MI inflammatory response have not been fully elucidated. Myeloid-associated immunoglobulin-like receptor II (MAIR-II) is a cell surface receptor on macrophages and a subset of B cells. Previous studies have shown that MAIR-II mediates pro-inflammatory cytokine production in macrophages. However, its role in MI is unknown. In this study, the novel role and mechanism of MAIR-II in inflammation and macrophages in MI was identified.

Materials and Methods: To address MAIR-II’s role in MI in vivo, an MI mouse model of permanent left coronary artery ligation was utilized. To determine MAIR-II’s expression levels and time course in infarcted C57BL/6J (WT) hearts, quantitative-polymerase chain reaction (q-PCR) was used to evaluate MAIR-II’s gene expression and flow cytometry was used to assess MAIR-II’s expression on myeloid cells post-MI. To determine the effects of MAIR-II in the post-MI response, WT and MAIR-II deficient (Cd300c2-/-) mice were utilized. Post-MI survival was assessed by conducting a Kaplan Meier survival curve analysis, cardiac remodeling was evaluated by echocardiography analysis, and effects on infarct size were determined by Masson trichrome staining. For further investigation, pro-inflammatory and pro-fibrotic cytokine expression were measured in infarcted heart tissue by q-PCR. Moreover, the accumulation of macrophages, anti-inflammatory macrophages, and pro-inflammatory macrophages was observed in infarcted hearts by flow cytometry. Finally, to elucidate MAIR-II’s molecular mechanism in vitro, pro-inflammatory and anti-inflammatory cytokine expressions were measured from Cd300c2-/- and WT bone marrow-derived macrophages (BMDMs) stimulated by a toll-like receptor (TLR)9 ligand ODN1668 or a simultaneous stimulation of ODN1668 and a TLR9 antagonist ODN2088.

Results: MAIR-II positive myeloid cells were abundant from post-MI days 3 to 5 in infarcted hearts of WT mice. Furthermore, Cd300c2-/- mice had a higher post-MI survival rate than WT mice (p=0.043). In echocardiography, Cd300c2-/- mice had thicker left ventricle posterior walls and higher ejection fractions compared to WT mice post-MI. After further investigation, Cd300c2-/- hearts had less pro-inflammatory IL-1β and less F4/80+CD206low pro-inflammatory macrophages in infarcted hearts compared to WT. Upon stimulation with a TLR9 ligand, Cd300c2-/- BMDMs produced less inflammatory cytokines such as IL-1β and IL-6.

Discussion: MAIR-II may increase pro-inflammatory macrophage infiltration and subsequent pro-inflammatory cytokine production via TLR9, leading to exacerbated post-MI inflammation. Therefore, modified macrophage responses by MAIR-II in post-MI inflammation can lead to harmful effects including enlarged infarct size and higher mortality. In the current study, the length of infarct segments was shorter in Cd300c2-/- mice compared to WT. After further investigation, there were more surviving cardiomyocytes in the infarcted area of Cd300c2-/- than in that of WT. These findings imply that the infarcted area with few remaining cardiomyocytes may be vulnerable to wall stress and thus become more stretched. Moreover, necrotic cells or damaged living cells release damage-associated molecular patterns (DAMPs), which are recognized by pattern-recognition receptors such as TLRs. In MI, necrotic cardiac cells release mitochondrial DNA (mtDNA) and acts as a DAMP, activating TLR9-dependent NF-κB inflammation. Thus, this study suggests that macrophage activation via MAIR-II and TLR9 can cause excessive post-MI inflammation thus increasing cardiac necrosis and enlarges infarct size. Future clinical applications of MAIR-II can be considered during the acute inflammatory phase of post-MI to ensure favorable late phase effects. This study suggests that MAIR-II promotes inflammation and thereby fibrosis during the early stage after MI, leading to poor prognosis during the late stage. Furthermore, elevated levels of MAIR-II in myocardial tissue can be an indicator of post-MI severity. Thus, reducing MAIR-II levels in the early stages of post-MI may prevent the worsening of adverse cardiac events over time.

Conclusion: MAIR-II may enhance TLR9-mediated pro-inflammatory macrophage activation in MI, leading to adverse cardiac remodeling and poor prognosis.

この論文で使われている画像

参考文献

1. Bennett JE, Stevens GA, Mathers CD, et al. NCD countdown 2030: worldwide trends in non-communicable disease mortality and progress towards sustainable development goal target 3.4. Lancet. 2018;392:1072-1088.

2. Anzai T. Post-infarction inflammation and left ventricular remodeling: a double-edged sword. Circ J. 2013;77:580-587.

3. Frangogiannis NG. The inflammatory response in myocardial injury, repair and remodeling. Nat Rev Cardiol. 2014;11:255-265.

4. Ong S, Hernandez-Resendiz S, Crespo-Avilan GE, et al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther. 2018;186:73-87.

5. Huang S, Frangogiannis NG. Anti-inflammatory therapies in myocardial infarction: failure, hopes, and challenges. Br J Pharmacol. 2018;175:1377-1400.

6. de Haan JJ, Smeets MB, Pasterkamp G, et al. Danger signals in the initiation of the inflammatory response after myocardial infarction. Mediators Inflamm. 2013;2013.

7. Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10:826-837.

8. West AP and Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol. 2017;17:363-375.

9. Ekstrand MI, Falkenberg M, Rantanen A, et al. Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet. 2004;13:935–944.

10. Larsson NG, Wang J, Wilhelmsson H, et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet. 1998;18:231–236.

11. Wang H, Li T, Chen S, et al. Neutrophil extracellular trap mitochondrial DNA and its autoantibody in systemic lupus erythematosus and a proof-of-concept trial of metformin. Arthritis Rheumatol. 2015;67:3190-3200.

12. Lood C, Blanco LP, Purmalek MM, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 2016;22:146-153.

13. Caielli S, Athale S, Domic B, et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J Exp Med. 2016;213:697-713.

14. Hajizadeh S, Degroot J, TeKoppele JM, et al. Extracellular mitochondrial DNA and oxidatively damaged DNA in synovial fluid of patients with rheumatoid arthritis. Arthritis Res Ther. 2003;5:R234-R240.

15. Collins LV, Hajzadeh S, Holme E, et al. Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J Leukoc Biol. 2004;75:995-1000.

16. Tsuji N, Tsuji T, Ohashi N, et al. Role of mitochondrial DNA in septic AKI via Toll-like receptor 9. J Am Soc Nephrol. 2016;27:2009-2020.

17. Yao X, Carlson D, Sun Y, et al. Mitochondrial ROS induces cardiac inflammation via a pathway through mtDNA damage in a pneumonia-related sepsis model. PLoS ONE. 2015;10:e0139416.

18. Kuck JL, Obiako BO, Gorodnya OM, et al. Mitochondrial DNA damage-associated molecular patterns mediate a feed-forward cycle of bacteria-induced vascular injury in perfused rat lungs. Am J Physiol Lung Cell Mol Physiol. 2015;308:L1078-L1085.

19. McCarthy CG, Wenceslau CF, Goulopoulou S, et al. Circulating mitochondrial DNA and Toll-like receptor 9 are associated with vascular dysfunction in spontaneously hypertensive rats. Cardiovasc Res. 2015;107:119-130.

20. Ding Z, Liu S, Wang X, et al. Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis. Sci Rep. 2013:3:1077.

21. Zhang Z, Meng P, Han Y, et al. Mitochondrial DNA-LL-37 complex promotes atherosclerosis by escaping from autophagic recognition. Immunity. 2015;43:1137-1147.

22. Tumurkhuu G, Shimada K, Dagvadorj J, et al. Ogg1-dependent DNA repair regulates NLRP3 inflammasome and prevents atherosclerosis. Circ Res. 2016;119:e76-e90.

23. Oka T, Hikoso S, Yamaguchi O, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature. 2012;485:251-255.

24. Terluk MR, Kapphahn RJ, Soukup LM, et al. Investigating mitochondria as a target for treating age-related macular degeneration. J Neurosci. 2015;35:7304-7311.

25. Karunadharma PP, Nordgaard CL, Olsen TW, et al. Mitochondrial DNA damage as a potential mechanism for age-related macular degeneration. Invest Ophthalmol Vis Sci. 2010;51:5470-5479.

26. Dib B, Haijiang L, Maidana DE, et al. Mitochondrial DNA has a pro-inflammatory role in AMD. Biochim Biophys Acta. 2015;1853:2897-2906.

27. Pinti M, Cevenini E, Nasi M, et al. Circulating mitochondrial DNA increases with age and is a familiar trait: implications for "inflamm-aging". Eur J Immunol. 2014;44:1552-1562.

28. Verschoor CP, Loukov D, Naidoo A, et al. Circulating TNF and mitochondrial DNA are major determinants of neutrophil phenotype in the advanged-age, frail elderly. Mol Immunol. 2015;65:148-156.

29. Liu Y, Yan W, Tohme S, et al. Hypoxia induced HMGB1 and mitochondrial DNA interactions mediate tumor growth in hepatocellular carcinoma through Toll-like receptor 9. J Hepatol. 2015;63:114-121.

30. Marques PE, Amaral SS, Pires DA, et al. Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology. 2012;56:1971-1982.

31. Garcia-Martinez I, Santoro N, Chen Y, et al. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J Clin Invest. 2016;126:859-864.

32. Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104-107.

33. Zhang Q, Itagaki K, and Hauser CJ. Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase. Shock. 2010;34:55-59.

34. Itagaki K, Kaczmarek E, Lee YT, et al. Mitochondrial DNA released by trauma induces neutrophil extracellular traps. PLoS ONE. 2015;10:e0120549.

35. Nakayama H, Otsu K. Mitochondrial DNA as an inflammatory mediator in cardiovascular diseases. Biochem J. 2018;475:839-852.

36. Bliksoen M, Mariero LH, Ohm IL, et al. Increased circulating mitochondrial DNA after myocardial infarction. Int J Cardiol. 2012;158:132-134.

37. Wang L, Xie L, Zhang Q, et al. Plasma nuclear and mitochondrial DNA levels in acute myocardial infarction patients. Coron Artery Dis. 2015;26:296-300.

38. Qin C, Gu J, Liu R, et al. Release of mitochondrial DNA correlates with peak inflammatory cytokines in patients with acute myocardial infarction. Anatol J Cardiol. 2017;17:224-228.

39. Liu J, Cai X, Xie L, et al. Circulating cell-free mitochondrial DNA is a biomarker in the development of coronary heart disease in the patients with type 2 diabetes. Clin Lab. 2015;61:661-667.

40. Liu J, Zou Y, Tang Y, et al. Circulating cell-free mitochondrial deoxyribonucleic acid is increased in coronary heart disease patients with diabetes mellitus. J Diabetes Investig. 2016;7:109-114.

41. Mitchell JA, Ryffel B, Quesniaux VFJ, et al. Role of pattern-recognition receptors in cardiovascular health and disease. Biochem Soc Trans. 2007;36:1449-1452.

42. Frantz S, Erti G, Bauersachs J. Mechanisms of disease: toll-like receptors in cardiovascular disease. Nat Clin Pract Cardiovasc Med. 2007;4:444-454.

43. Nishimura M and Naito S. Tissue-specific mRNA expression profiles of toll-like receptors and related genes. Biol Pharm Bull. 2005;28:886-892.

44. Kaisho T and Akira S. Toll-like receptor function and signaling. J Allergy Clin Immunol. 2006;117:P979-P987.

45. Klinman DM. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol. 2004;4:249-258.

46. Krug D, Rothenfusser S, Hornung V, et al. Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. Eur J Immunol. 2001;31:2154-2163.

47. Verthelyi D, Ishii KJ, Takeshita F, et al. Human peripheral blood cells differentially recognize and respond to two distinct CPG motifs. J Immunol. 2001;166:2372-2377.

48. Ballas ZK, Rasmussen WL, Krieg AM. Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacteria DNA. J Immunol. 1996;157:1840-1845.

49. Hartmann G, Weeratna RD, Ballas ZK, et al. Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J Immunol. 2000;165:1617-1624.

50. Gürsel M, Verthelyi D, Gürsel I, et al. Differential and competitive activation of human immune cells by distinct classes of CpG oligodeoxynucleotide. J Leukoc Biol. 2002;71:813-820.

51. Stacey KJ, Sester DP, Sweet MJ, et al. Macrophage activation by immunostimulatory DNA. Curr Top Microbiol Immunol. 2000;247;41-58.

52. Krieg AM, Wu T, Weeratna R, et al. Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. Proc Natl Acad Sci USA. 1998;95:12631-12636.

53. Gursel I, Gursel M, Yamada H, et al. Repetitive elements in mammalian telemeres suppress bacterial DNA-induced immune activation. J Immunol. 2003;171:1393-1400.

54. Stunz LL, Lenert P, Peckham D, et al. Inhibitory oligonucleotides specifically block effects of stimulatory CpG oligonucleotides in B cells. Eur J Immunol. 2002;32:1212-1222.

55. Lenert P, Yasuda K, Busconi L, et al. DNA-like class R inhibitory oligonucleotides (INH-ODNs) preferentially block autoantigen-induced B cell and dendritic cell activation in vitro and autoantibody production in lupus-prone MRL-Fas(lpr/lpr) mice in vivo. Arthritis Res Ther. 2009;11:R79.

56. Eichholz K, Bru T, Tran TTP, et al. Immune-complexed adenovirus induce AIM2-mediated pyroptosis in human dendritic cells. PLoS Pathog. 2016;12:e1005871.

57. Kaminski JJ, Schattgen SA, Tzeng T, et al. Synthetic oligodeoxynucleotides containing suppressive TTAGGG motifs inhibit AIM2 inflammasome activation. J Immunol. 2013;191:3876-3883.

58. Steinhagen F, Zillinger T, Peukert K, et al. Suppressive oligodeoxynucleotides containing TTAGGG motifs inhibit cGAS activation in human monocytes. Eur J Immunol. 2017;48:605-611.

59. Omiya S, Omori Y, Taneike M, et al. Toll-like receptor 9 prevents cardiac rupture after myocardial infarction in mice independently of inflammation. Am J Physiol Heart Circ Physiol. 2016;311:H1485-H1497.

60. Zhou D, Su Y, Jian F, et al. CpG oligodeoxynucleotide preconditioning improves cardiac function after myocardial infarction via modulation of energy metabolism and angiogenesis. J Cell Physiol. 2018;233:4245-4257.

61. Zhang G, Zhang X, Li D, et al. Long-term oral atazanavir attenuates myocardial infarction-induced cardiac fibrosis. Eur J Pharmacol. 2018;828:97-102.

62. Kitazume-Taneike R, Taneike M, Omiya S, et al. Ablation of Toll-like receptor 9 attenuates myocardial ischemia/reperfusion injury in mice. Biochem Biophys Res Commun. 2019;515:442-447.

63. Ohn IK, Gao E, Olsen MB, et al. Toll-Like Receptor 9-Activation during onset of myocardial ischemia does not influence infarct extension. PLoS ONE. 2014;9:e104407.

64. Ma Y, Mouton AJ, Lindsey ML. Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction. Transl Res. 2018;191:15–28.

65. Yan X, Anzai A, Katsumata Y, et al. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J Mol Cell Cardiol. 2013;62:24-35.

66. Frantz S, Nahrendorf M. Cardiac macrophages and their role in ischaemic heart disease. Cardiovasc Res. 2014;102:240–248.

67. Lambert JM, Lopez EF, Lindsey ML. Macrophage roles following myocardial infarction. Int J Cardiol. 2008;130:147–158.

68. Shivshankar P, Halade G V., Calhoun C, et al. Caveolin-1 deletion exacerbates cardiac interstitial fibrosis by promoting M2 macrophage activation in mice after myocardial infarction. J Mol Cell Cardiol. 2014;76:84–93.

69. Leor J, Rozen L, Zuloff-Shani, et al. Ex vivo activated human macrophages improve healing, remodeling, and function of the infarcted heart. Circulation. 2006;114:I-94-I–100.

70. van Amerongen MJ, Harmsen MC, van Rooijen N, et al. Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol. 2007;170:818–829.

71. Harel-Adar T, Ben Mordechai T, Amsalem Y, et al. Modulation of cardiac macrophage by phosphatidylserine-presenting liposomes improves infarct repair. Proc Natl Acad Sci USA. 2011:108:1827-1832.

72. Courties G, Heidt T, Sebas M, et al. In vivo silencing of the transcription fator IRF5 reprograms the macrophage phenotype and improves infarct healing. J Am Coll Cardiol. 2014;63:1556-1566.

73. Zhou LS, Zhao GL, Liu Q, et al. Silencing collapsin response mediator protein-2 reprograms macrophage phenotype and improves infarct healing in experimental myocardial infarction by modulating monocyte/macrophage differentiation. J Inflamm (Lond). 2015;12:11.

74. Weirather J, Hofmann UD, Beyersdorf N, et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ Res. 2014;115:55-67.

75. Ben-Mordechai T, Palevski D, Glucksam-Galnoy Y, et al. Targeting macrophages subsets for infarct repair. J Cardiovasc Pharmacol Ther. 2015;20:36-51.

76. Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization. Front Biosci. 2008;13:453-461.

77. Mantovania A, Sozzani S, Allavena P, et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25:677-686.

78. Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity polarization, and function in health and disease. J Cell Physiol. 2018;233:6425-6440.

79. Leuschner F, Dutta P, Gorbatov R, et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol. 2011;29:1005–1010.

80. Stein M, Keshav S, Harris N, et al. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med. 1992;176:287-292.

81. Jung M, Ma Y, Iyer RP, et al. IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation. Basic Res Cardiol. 2017;112:33.

82. Leblond A, Klinkert K, Martin K, et al. Systemic and cardiac depletion of M2 macrophage through CSF-1R signaling inhibition alters cardiac function post myocardial infarction. PLoS One. 2015;10:e0137515.

83. Harel-Adar T, Ben Mordechai T, Amsalem Y, et al. Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proc Natl Acad Sci U S A. 2011;108:1827–1832.

84. Courties G, Heidt T, Sebas M, et al. In vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing. J Am Coll Cardiol. 2014;63:1556–1566.

85. Zhou LS, Zhao GL, Liu Q, et al. Silencing collapsin response mediator protein-2 reprograms macrophage phenotype and improves infarct healing in experimental myocardial infarction model. J Inflamm (Lond). 2015;12:11.

86. da Silva DM, Langer H, Graf Tobias. Inflammatory and molecular pathways in heart failure - ischemia, HFpEF and transthyretin cardiac amyloidosis. Int J Mol Sci. 2019;20:2322.

87. Cheng X, Ding Y, Xia C, et al. Atorvastatin modulates Th1/Th2 response in patients with chronic heart failure. J Card Fail. 2009;15:158-162.

88. Jin H, Li W, Yang R, et al. Inhibitory effects of interferon-gamma on myocardial hypertrophy. Cytokine. 2005;31:405-414.

89. Garcia AG, Wilson RM, Heo J, et al. Interferon-gamma ablation exacerbates myocardial hypertrophy in diastolic heart failure. Am J Physiol Heart Circ Physiol. 2012;303:H587-H596.

90. Abbate A., Kontos MC, Grizzard JD, et al. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot Study). Am. J. Cardiol. 2010;105:1371–1377.

91. Morton AC., Rothman AM, Greenwood JP, et al. The effect of interleukin-1 receptor antagonist therapy on markers of inflammation in non-ST elevation acute coronary syndromes: The MRC-ILA Heart Study. Eur. Heart J. 2015;36:377–384.

92. Kleveland O., Kunszt G., Bratlie M., et al. Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: A double-blind, randomized, placebo-controlled phase 2 trial. Eur. Heart J. 2016;37:2406–2413.

93. Mann DL, McMurray JJV, Packer M., et al. Targeted anticytokine therapy in patients with chronic heart failure: Results of the randomized etanercept worldwide evaluation (RENEWAL). Circulation. 2004;109:1594–1602.

94. Chung ES, Packer M., Lo KH, et al. Anti-TNF therapy against congestive heart failure investigators randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-α, in patients with moderate-to-severe heart failure. Circulation. 2003;107:3133–3140.

95. Luo K, Zhang W, Sui L, et al. DIgR1, a novel membrane receptor of the immunoglobulin gene superfamily, is preferentially expressed by antigen-presenting cells. Biochem Biophys Res Commun. 2001;287:35-41.

96. Chung DH, Humphrey MB, Nakamura MC, et al. CMRF-35-like molecule-1, a novel mouse myeloid receptor, can inhibit osteoclast formation. J Immunol. 2003;171:6541-6548.

97. Kumagai H, Oki T, Tamitsu K, et al. Identification and characterization of a new pair of immunoglobulin-like receptors LMIR1 and 2 derived from murine bone marrow-derived mast cells. Biochem Biophys Res Commun. 2003;307:719-729.

98. Borrego F. The CD300 molecules: an emerging family of regulators of the immune system. Blood. 2013;121:1951–1960.

99. Niizuma K, Tahara-Hanaoka S, Noguchi E, et al. Identification and characterization of CD300H, a new member of the human CD300 immunoreceptor family. J Biol Chem. 2015;290:22298-22308.

100. Clark GJ, Ju X, Tate C, et al. The CD300 family of molecules are evolutionarily significant regulators of leukocyte functions. Trends Immunol. 2009;30:209-217.

101. Dimasi N, Roessle M, Moran O, et al. Molecular analysis and solution structure from small-angle x-ray scattering of the human natural killer inhibitory receptor IRp60 (CD300a). Int J Biol Macromol. 2007;40:193-200.

102. Márquez JA, Galfré E, Dupeux F, et al. The crystal structure of the extracellular domain of the inhibitor receptor expressed on myeloid cells IREM-1. J Mol Biol. 2007;367:310-318.

103. Shibuya A, Nakahashi-Oda C, Tahara-Hanaoka S. Regulation of immune responses by the activating and inhibitory myeloid-associate immunoglobuline-like receptors (MAIR) (CD300). Immune Netw. 2009;9:41-45.

104. Yotsumoto K, Okoshi Y, Shibuya K, et al. Paired activating and inhibitory immunoglobulin-like receptors, MAIR-I and MAIR-II, regulate mast cell and macrophage activation. J Exp Med. 2003;198:223–233.

105. Nakahashi C, Tahara-Hanaoka S, Totsuka N, et al. Dual assemblies of an activating immune receptor, MAIR-II, with ITAM-bearing adapters DAP12 and FcRγ chain on peritoneal macrophages. J Immunol. 2007;178:765–770.

106. Nakano-Yokomizo T, Tahara-Hanaoka S, Nakahashi-Oda C, et al. The immunoreceptor adapter protein DAP12 suppresses B lymphocyte-driven adaptive immune responses. J Exp Med. 2011;208:1661-1671.

107. Totsuka N, Kim Y-G, Kanemaru K, et al. Toll-like receptor 4 and MAIR-II/CLM-4/LMIR2 immunoreceptor regulate VLA-4-mediated inflammatory monocyte migration. Nat Commun. 2014;5:4710.

108. Nakazawa Y, Ohtsuka S, Nakahashi-Oda C, et al. Cutting edge: involvement of the immunoreceptor CD300c2 on alveolar macrophages in bleomycin-induced lung fibrosis. J Immunol. 2019;203:3107–3111.

109. Kimura T, Tajiri K, Sato A, et al. Tenascin-C accelerates adverse ventricular remodeling after myocardial infarction by modulating macrophage polarization. Cardiovasc Res. 2019;115:614-624.

110. Sudakov NP, Apartsin KA, Lepekhova SA, et al. The level of free circulating mitochondrial DNA in blood as predictor of death in case of acute coronary syndrome. Eur J Med Res. 2017;22:1.

111. Bliksøen M, Mariero LH, Torp MK, et al. Extracellular mtDNA activates NF-κB via toll-like receptor 9 and induces cell death in cardiomyocytes. Basic Res Cardiol. 2016;111:42.

112. Ma C, Ouyang Q, Huang Z, et al. Toll-Like Receptor 9 inactivation alleviated atherosclerotic progression and inhibited macrophage polarized to M1 phenotype in ApoE-/- mice. Dis Markers. 2015;2015:909572.

113. Kohno T, Anzai T, Naito K, et al. Role of high-mobility group box 1 protein in post-infarction healing process and left ventricular remodelling. Cardiovasc Res. 2008;81:565–573.

114. Anzai T. Inflammatory mechanisms of cardiovascular remodeling. Circ J. 2018;82:629‐ 635.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る