リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Introduction pathways and evolutionary mechanisms of alien species of Lolium spreading across sandy coasts in Japan」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Introduction pathways and evolutionary mechanisms of alien species of Lolium spreading across sandy coasts in Japan

Hirata, Momoko Higuchi, Yumiko Matsuo, Ayumi Sato, Mitsuhiko P. Suyama, Yoshihisa Kiyoshi, Takako Konuma, Akihiro Tominaga, Tohru Shimono, Yoshiko 京都大学 DOI:10.1111/1365-2745.14206

2023.12

概要

1. Estimating the role of specific processes in the spread of alien species necessitates the determination of introduction pathways and source populations of invaded areas. Alien grasses in the genus Lolium that have extensively invaded Japan provide a unique opportunity to estimate the expansion process through direct comparison between source and naturalised populations because the introduction pathways, contaminants in grain commodities and commercial cultivars for fodder crops or revegetation materials are well-known. Therefore, by directly comparing source and naturalised populations, we estimated the introduction pathways and whether adaptative evolution occurred in Lolium species on sandy coasts in Japan. 2. Lolium individuals sampled from naturalised populations in croplands, seaports, and sandy coasts were compared with those from two introduction sources for morphological and genetic variations based on a genome-wide single nucleotide polymorphism analysis and a common garden experiment. Furthermore, we conducted a reciprocal transplant experiment between cropland and sandy coast. 3. Populations naturalised in croplands were closely related to the cultivars, whereas those naturalised in seaports and sandy coasts were associated with contaminants. These results indicate that the cropland and sandy coast populations are derived from cultivars and contaminants, respectively. In addition, asymmetric gene flow from cropland populations to sandy coast populations was observed. The reciprocal transplant experiment clearly demonstrated the home site advantage; populations derived from croplands yielded higher floret numbers than those derived from other habitats at the cropland site; sandy coast populations had higher survival rates than those from croplands at the coastal site. Port populations exhibited a similar tendency as sandy coast populations, indicating that contaminants may be originally adapted to salty and dry environments, such as that in sandy coasts. The flowering phenology in the sandy coast populations evolved in the late flowering; therefore, late flowering alleles may have been transferred from cropland populations to sandy coast populations. 4. Synthesis. We demonstrated that two congeneric species with different ecological characteristics were introduced through multiple introduction pathways and spread across different habitats. A direct comparison between source and naturalised populations can considerably elucidate the patterns and processes of biological invasions.

この論文で使われている画像

参考文献

Through a population genetics approach and a reciprocal trans-

Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based

estimation of ancestry in unrelated individuals. Genome Research,

19(9), 1655–1664. https://​doi.​org/​10.​1101/​gr.​094052.​109

plant experiment, we demonstrated that two congeneric species

13652745, 2023, 12, Downloaded from https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2745.14206 by Cochrane Japan, Wiley Online Library on [27/02/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

2593

HIRATA ET AL.

Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data. Bioinformatics Group at Babraham Institute. www.​

bioin​forma​tics.​babra​ham.​ac.​uk/​proje​c ts/​fastqc/​

Australian Herbage Plant Registration Authority. (1990). A. Grasses, 2

Ryegrass Lolium rigidum Gaud. (annual ryegrass) cv. Wimmera. In

Register of Australian Herbage Plant Cultivars. CSIRO. https://​doi.​

org/​10.​1071/​E A010​06_​CU

Bennett, S. J. (1997). A phenetic analysis and lateral key of the genus

Lolium (Gramineae). Genetic Resources and Crop Evolution, 44(1),

63–72. https://​doi.​org/​10.​1023/A:​10086​26504202

Bennett, S. J., Hayward, M. D., & Marshall, D. F. (2002). Electrophoretic

variation as a measure of species differentiation between four species of the genus Lolium. Genetic Resources and Crop Evolution, 49(1),

59–66. https://​doi.​org/​10.​1023/A:​10138​99612389

Bock, D. G., Kantar, M. B., Caseys, C., Matthey-Doret, R., & Rieseberg,

L. H. (2018). Evolution of invasiveness by genetic accommodation.

Nature Ecology and Evolution, 2(6), 991–999. https://​doi.​org/​10.​

1038/​s 4155​9-​018-​0553-​z

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible

trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–

2120. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btu170

Castillo, M. L., Schaffner, U., van Wilgen, B. W., & Le Roux, J. J. (2021).

The contribution of phenotypic traits, their plasticity, and rapid

evolution to invasion success: Insights from an extraordinary natural experiment. Ecography, 44(7), 1035–1050. https://​doi.​org/​10.​

1111/​ecog.​05541​

Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W.

A. (2013). Stacks: An analysis tool set for population genomics.

Molecular Ecology, 22(11), 3124–3140. https://​doi.​org/​10.​1111/​

mec.​12354​

Catford, J. A., Smith, A. L., Wragg, P. D., Clark, A. T., Kosmala, M.,

Cavender-Bares, J., Reich, P. B., & Tilman, D. (2019). Traits linked

with species invasiveness and community invasibility vary with

time, stage and indicator of invasion in a long-term grassland experiment. Ecology Letters, 22(4), 593–604. https://​doi.​org/​10.​1111/​

ele.​13220​

Charmet, G., & Balfourier, F. (1994). Isozyme variation and species relationships in the genus Lolium L. (ryegrasses, Graminaceae).

Theoretical and Applied Genetics: International Journal of Plant

Breeding Research, 87(6), 641–649. https://​doi.​org/​10.​1007/​BF002​

22888​

Chown, S. L., Hodgins, K. A., Griffin, P. C., Oakeshott, J. G., Byrne, M., &

Hoffmann, A. A. (2015). Biological invasions, climate change and

genomics. Evolutionary Applications, 8(1), 23–46. https://​doi.​org/​

10.​1111/​eva.​12234​

Clark, L. V., Evans, K. J., & Jasieniuk, M. (2013). Origins and distribution

of invasive Rubus fruticosus L. agg. (Rosaceae) clones in the Western

United States. Biological Invasions, 15(6), 1331–1342. https://​doi.​

org/​10.​1007/​s1053​0 -​012-​0369-​8

Colautti, R. I., & Lau, J. A. (2015). Contemporary evolution during invasion: Evidence for differentiation, natural selection, and local adaptation. Molecular Ecology, 24(9), 1999–2017. https://​doi.​org/​10.​

1111/​mec.​13162​

Cooper, J. P., & Saeed, S. W. (1949). Studies on growth and development in Lolium: I. Relation of the annual habit to head production

under various systems of cutting. Journal of Ecology, 37(2), 233–259.

https://​doi.​org/​10.​2307/​2256607

Diagne, C., Leroy, B., Vaissière, A. C., Gozlan, R. E., Roiz, D., Jarić, I., Salles,

J. M., Bradshaw, C. J. A., & Courchamp, F. (2021). High and rising economic costs of biological invasions worldwide. Nature, 592(7855),

571–576. https://​doi.​org/​10.​1038/​s4158​6-​021-​03405​-​6

Dlugosch, K. M., & Parker, I. M. (2008). Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple

introductions. Molecular Ecology, 17(1), 431–449. https://​doi.​org/​

10.​1111/j.​1365-​294X.​2007.​03538.​x

HIRATA ET AL.

Dlugosch, K. M., Anderson, S. R., Braasch, J., Cang, F. A., & Gillette, H.

D. (2015). The devil is in the details: Genetic variation in introduced

populations and its contributions to invasion. Molecular Ecology,

24(9), 2095–2111. https://​doi.​org/​10.​1111/​mec.​13183​

Donohue, K., Rubio De Casas, R., Burghardt, L., Kovach, K., & Willis, C. G.

(2010). Germination, postgermination adaptation, and species ecological ranges. Annual Review of Ecology, Evolution, and Systematics, 41,

293–319. https://​doi.​org/​10.​1146/​annur​ev-​ecols​ys-​10220​9-​144715

Ellstrand, N. C., & Schierenbeck, K. A. (2000). Hybridization as a stimulus for the evolution of invasiveness in plants? Proceedings of the

National Academy of Sciences of the United States of America, 97(13),

7043–7050. https://​doi.​org/​10.​1073/​pnas.​97.​13.​7043

Estoup, A., & Guillemaud, T. (2010). Reconstructing routes of invasion

using genetic data: Why, how and so what? Molecular Ecology, 19(19),

4113–4130. https://​doi.​org/​10.​1111/j.​1365-​294X.​2010.​0 4773.​x

Fukano, Y., Guo, W., Uchida, K., & Tachiki, Y. (2020). Contemporary

adaptive divergence of plant competitive traits in urban and rural

populations and its implication for weed management. Journal of

Ecology, 108(6), 2521–2530. https://​d oi.​o rg/​10.​1111/​1365-​2745.​

13472​

Guo, W. Y., Lambertini, C., Nguyen, L. X., Li, X. Z., & Brix, H. (2014).

Preadaptation and post-introduction evolution facilitate the invasion of Phragmites australis in North America. Ecology and Evolution,

4(24), 4567–4577. https://​doi.​org/​10.​1002/​ece3.​1286

Higuchi, Y., Shimono, Y., & Tominaga, T. (2017). The expansion route of

ryegrasses (Lolium spp.) into Sandy coasts in Japan. Invasive Plant

Science and Management, 10(1), 61–71. https://​doi.​org/​10.​1017/​inp.​

2017.​1

Humphreys, M., Feuerstein, U., Vandewalle, M., & Baert, J. (2010).

Ryegrasses. In B. Boller, U. K. Posselt, & F. Veronesi (Eds.), Fodder

crops and amenity grasses (pp. 211–260). Springer-Verlag.

Ikeda, M., Nishi, T., Asai, M., Muranaka, T., Konuma, A., Tominaga, T., &

Shimono, Y. (2022). The role of weed seed contamination in grain

commodities as propagule pressure. Biological Invasions, 24(6),

1707–1723. https://​doi.​org/​10.​1007/​s1053​0 -​022-​02741​-​6

Japan Grassland Agriculture and Forage Seed Association. (2010). Italian

ryegrass. In Guide of forage crop varieties (pp. 11–22). Japan Grass

land Agriculture and Forage Seed Association.

Keller, S. R., & Taylor, D. R. (2008). History, chance and adaptation during

biological invasion: Separating stochastic phenotypic evolution

from response to selection. Ecology Letters, 11(8), 852–866. https://​

doi.​org/​10.​1111/j.​1461-​0248.​2008.​01188.​x

Klaas, M., Yang, B., Bosch, M., Thorogood, D., Manzanares, C., Armstead,

I. P., Franklin, F. C. H., & Barth, S. (2011). Progress towards elucidating the mechanisms of self-incompatibility in the grasses: Further

insights from studies in Lolium. Annals of Botany, 108(4), 677–685.

https://​doi.​org/​10.​1093/​aob/​mcr186

Kloot, P. M. (1983). The genus Lolium in Australia. Australian Journal of

Botany, 31(4), 421–435. https://​doi.​org/​10.​1071/​BT983​0 421

Kreiner, J. M., Caballero, A., Wright, S. I., & Stinchcombe, J. R. (2022).

Selective ancestral sorting and de novo evolution in the agricultural invasion of Amaranthus tuberculatus. Evolution, 76(1), 70–85.

https://​doi.​org/​10.​1111/​evo.​14404​

Kreiner, J. M., Giacomini, D. A., Bemm, F., Waithaka, B., Regalado, J.,

Lanz, C., Hildebrandt, J., Sikkema, P. H., Tranel, P. J., Weigel, D.,

Stinchcombe, J. R., & Wright, S. I. (2019). Multiple modes of convergent adaptation in the spread of glyphosate-resistant Amaranthus

tuberculatus. Proceedings of the National Academy of Sciences of the

United States of America, 116(42), 21076–21084. https://​doi.​org/​10.​

1073/​pnas.​19008​70116​

Kreiner, J. M., Latorre, S. M., Burbano, H. A., Stinchcombe, J. R., Otto,

S. P., Weigel, D., & Wright, S. I. (2022). Rapid weed adaptation and

range expansion in response to agriculture over the past two centuries. Science, 378(6624), 1079–1085. https://​doi.​org/​10.​1126/​scien​

ce.​abo7293

13652745, 2023, 12, Downloaded from https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2745.14206 by Cochrane Japan, Wiley Online Library on [27/02/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

2594 Kurokawa, S., Kobayashi, H., & Ikeda, K. (2010). Genetic background of

an invasive Lolium population in central Japan using chloroplast

DNA and SSR markers. Weed Research, 50(3), 245–252. https://​doi.​

org/​10.​1111/j.​1365-​3180.​2010.​0 0772.​x

Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with

Bowtie 2. Nature Methods, 9(4), 357–359. https://​doi.​org/​10.​1038/​

nmeth.​1923

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N.,

Marth, G., Abecasis, G., Durbin, R., & 1000 Genome Project Data

Processing Subgroup. (2009). The sequence alignment/map format

and SAMtools. Bioinformatics, 25(16), 2078–2079. https://​doi.​org/​

10.​1093/​bioin​forma​tics/​btp352

Li, Y., Stift, M., & van Kleunen, M. (2018). Admixture increases performance of an invasive plant beyond first-generation heterosis.

Journal of Ecology, 106(4), 1595–1606. https://​doi.​org/​10.​1111/​

1365-​2745.​12926​

Lowry, D. B., Rockwood, R. C., & Willis, J. H. (2008). Ecological reproductive isolation of coast and inland races of Mimulus guttatus.

Evolution, 62(9), 2196–2214. https://​d oi.​o rg/​10.​1111/j.​1558-​

5646.​2008.​0 0457.​x

Matzrafi, M., Preston, C., & Brunharo, C. A. (2021). Review: Evolutionary

drivers of agricultural adaptation in Lolium spp. Pest Management

Science, 77(5), 2209–2218. https://​doi.​org/​10.​1002/​ps.​6219

Maun, M. A., & Perumal, J. (1999). Zonation of vegetation on lacustrine

coastal dunes: Effects of burial by sand. Ecology Letters, 2(1), 14–18.

https://​doi.​org/​10.​1046/j.​1461-​0248.​1999.​21048.​x

Meirmans, P. G. (2020). GENODIVE version 3.0: Easy-to-use software

for the analysis of genetic data of diploids and polyploids. Molecular

Ecology Resources, 20(4), 1126–1131. https://​doi.​org/​10.​1111/​

1755-​0998.​13145​

Ministry of Land, Infrastructure, Transport and Tourism. (2020). Traffic

related statistics of Japan. www.​mlit.​go.​jp/​k-​toukei/​saish​intou​keihy​

ou.​html

Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4326.

Naylor, B. (1960). Species differentiation in the genus Lolium. Heredity,

15(2–3), 219–233. https://​doi.​org/​10.​1038/​hdy.​1960.​78

OECD. (2022). OECD List of Varieties eligible for seed certification. https://​

www.​oecd.​org/​agric​ulture/​seeds/​​varie​ties/​

Ogura, A., & Yura, H. (2008). Effects of sandblasting and salt spray

on inland plants transplanted to coastal sand dunes. Ecological

Research,

23(1),

107–112.

https://​d oi.​o rg/​10.​1007/​s1128​

4-​0 07-​0 347-​2

Paril, J., Pandey, G., Barnett, E. M., Rane, R. V., Court, L., Walsh, T., &

Fournier-Level, A. (2022). Rounding up the annual ryegrass genome: High-quality reference genome of Lolium rigidum. Frontiers

in Genetics, 13, 1012694. https://​doi.​org/​10.​3389/​fgene.​2022.​

1012694

Pfennig, K. S., Kelly, A. L., & Pierce, A. A. (2016). Hybridization as a facilitator of species range expansion. Proceedings of the Royal Society B:

Biological Sciences, 283(1839), 20161329. https://​doi.​org/​10.​1098/​

rspb.​2016.​1329

Qiao, H., Liu, W., Zhang, Y., Zhang, Y. Y., & Li, Q. Q. (2019). Genetic admixture accelerates invasion via provisioning rapid adaptive evolution.

Molecular Ecology, 28(17), 4012–4027. https://​doi.​org/​10.​1111/​

mec.​15192​

Quiroga, R. E., Golluscio, R. A., Blanco, L. J., & Fernández, R. J. (2010).

Aridity and grazing as convergent selective forces: An experiment

with an Arid Chaco bunchgrass. Ecological Applications, 20(7), 1876–

1889. https://​doi.​org/​10.​1890/​09-​0641.​1

R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://​w ww.​r-​proje​c t.​

org/​

Raper, G. P., Speed, R. J., Simons, J. A., Killen, A. L., Blake, A. I., Ryder,

A. T., Smith, R. H., Stainer, G. S., & Bourke, L. (2014). Groundwater

trend analysis for south-West Western Australia 2007–12, resource

2595

management technical report 388. Department of Agriculture and

Food.

Rieseberg, L. H., & Carney, S. E. (1998). Tansley review no. 102: Plant

hybridization. New Phytologist, 140(4), 599–624. https://​doi.​org/​10.​

1046/j.​1469-​8137.​1998.​0 0315.​x

Rius, M., & Darling, J. A. (2014). How important is intraspecific genetic

admixture to the success of colonising populations? Trends in

Ecology and Evolution, 29(4), 233–242. https://​doi.​org/​10.​1016/j.​

tree.​2014.​02.​0 03

Robbins, G. B., & Faulkner, G. B. (1983). Productivity of six ryegrass

(Lolium spp.) cultivars grown as irrigated annuals in the Burnett

district of south-east Queensland. Tropical Grasslands, 17(2),

49–54.

Schlaepfer, D. R., Glättli, M., Fischer, M., & van Kleunen, M. (2010). A

multi-species experiment in their native range indicates pre-adaptation of invasive alien plant species. New Phytologist, 185(4), 1087–

1099. https://​doi.​org/​10.​1111/j.​1469-​8137.​2009.​03114.​x

Shimono, Y., Shimono, A., Oguma, H., Konuma, A., & Tominaga, T. (2015).

Establishment of Lolium species resistant to acetolactate synthase-inhibiting herbicide in and around grain-importation ports

in Japan. Weed Research, 55(1), 101–111. https://​doi.​org/​10.​1111/​

wre.​12120​

Shimono, Y., Takiguchi, Y., & Konuma, A. (2010). Contamination of internationally traded wheat by herbicide-resistant Lolium rigidum. Weed

Biology and Management, 10(4), 219–228. https://​doi.​org/​10.​1111/j.​

1445-​6664.​2010.​0 0387.​x

Simberloff, D., Martin, J. L., Genovesi, P., Maris, V., Wardle, D. A.,

Aronson, J., Courchamp, F., Galil, B., García-Berthou, E., Pascal,

M., Pyšek, P., Sousa, R., Tabacchi, E., & Vilà, M. (2013). Impacts of

biological invasions: What's what and the way forward. Trends in

Ecology and Evolution, 28(1), 58–66. https://​doi.​org/​10.​1016/j.​tree.​

2012.​07.​013

Smith, A. L., Hodkinson, T. R., Villellas, J., Catford, J. A., Csergő, A.

M., Blomberg, S. P., Crone, E. E., Ehrlén, J., Garcia, M. B., Laine,

A. L., Roach, D. A., Salguero-Gómez, R., Wardle, G. M., Childs,

D. Z., Elderd, B. D., Finn, A., Munné-Bosch, S., Baudraz, M. E. A.,

Bódis, J., … Buckley, Y. M. (2020). Global gene flow releases invasive plants from environmental constraints on genetic diversity. Proceedings of the National Academy of Sciences of the United

States of America, 117(8), 4218–4227. https://​d oi.​o rg/​10.​1073/​

pnas.​19158​4 8117​

Sundqvist, L., Keenan, K., Zackrisson, M., Prodöhl, P., & Kleinhans, D.

(2016). Directional genetic differentiation and relative migration.

Ecology and Evolution, 6(11), 3461–3475. https://​doi.​org/​10.​1002/​

ece3.​2096

Suyama, Y., & Matsuki, Y. (2015). MIG-seq: An effective PCR-based

method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Scientific

Reports, 5, 1–12. https://​doi.​org/​10.​1038/​srep1​6963

Terrell, E. E. (1968). A taxonomic revision of the genus Lolium. Agricultural

Research Service, U.S. Department of Agriculture. https://​play.​

google.​com/​books/​​reader?​id=​NViZL​5O8CJ​YC&​pg=​GBS.​PP1

van Kleunen, M., Bossdorf, O., & Dawson, W. (2018). The ecology and

evolution of alien plants. Annual Review of Ecology, Evolution, and

Systematics, 49, 25–47. https://​doi.​org/​10.​1146/​annur​ev-​ecols​ys-​

11061​7-​062654

van Kleunen, M., Dawson, W., Essl, F., Pergl, J., Winter, M., Weber, E.,

Kreft, H., Weigelt, P., Kartesz, J., Nishino, M., Antonova, L. A.,

Barcelona, J. F., Cabezas, F. J., Cárdenas, D., Cárdenas-Toro, J.,

Castaño, N., Chacón, E., Chatelain, C., Ebel, A. L., … Pyšek, P. (2015).

Global exchange and accumulation of non-native plants. Nature,

525(7567), 100–103. https://​doi.​org/​10.​1038/​natur​e14910

van Kleunen, M., Röckle, M., & Stift, M. (2015). Admixture between native and invasive populations may increase invasiveness of Mimulus

guttatus. Proceedings of the Royal Society B: Biological Sciences,

282(1815), 20151487. https://​doi.​org/​10.​1098/​rspb.​2015.​1487

13652745, 2023, 12, Downloaded from https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2745.14206 by Cochrane Japan, Wiley Online Library on [27/02/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

HIRATA ET AL.

Vilà, M., Espinar, J. L., Hejda, M., Hulme, P. E., Jarošík, V., Maron, J. L.,

Pergl, J., Schaffner, U., Sun, Y., & Pyšek, P. (2011). Ecological impacts of invasive alien plants: A meta-analysis of their effects on

species, communities and ecosystems. Ecology Letters, 14(7), 702–

708. https://​doi.​org/​10.​1111/j.​1461-​0248.​2011.​01628.​x

Wagatsuma, S., Imanishi, J., Suyama, Y., Matsuo, A., Sato, M. P.,

Mitsuyuki, C., Tsunamoto, Y., Tominaga, T., & Shimono, Y. (2022).

Revegetation in Japan overlooks geographical genetic structure of

native Artemisia indica var. maximowiczii populations. Restoration

Ecology, 30(7), e135671. https://​doi.​org/​10.​1111/​rec.​13567​

Wilson, J. B., & Sykes, M. T. (1999). Is zonation on coastal sand dunes

determined primarily by sand burial or by salt spray? A test in New

Zealand dunes. Ecology Letters, 2(4), 233–236. https://​doi.​org/​10.​

1046/j.​1461-​0248.​1999.​0 0084.​x

Yu, Q., Ling, Y., Xiong, Y., Zhao, W., Xiong, Y., Dong, Z., Yang, J., Zhao,

J., Zhang, X., & Ma, X. (2022). RAD-seq as an effective strategy

for heterogenous variety identification in plants—A case study in

Italian Ryegrass (Lolium multiflorum). BMC Plant Biology, 22(1), 1–12.

https://​doi.​org/​10.​1186/​s1287​0 -​022-​03617​-​6

S U P P O R T I N G I N FO R M AT I O N

Additional supporting information can be found online in the

Supporting Information section at the end of this article.

Figure S1. (a) Locations of three regions (Kanto, Kansai and Kyushu)

and sites for a reciprocal sowing experiment (Kyoto University and

Shimazaki sandy coast) and sampling locations of naturalised Lolium

populations in (b) Kanto, (c) Kansai, and (d) Kyushu.

Figure S2. Measured morphological characteristics of (a) whole

plant, (b) inflorescence and (c) spikelet.

HIRATA ET AL.

Figure S3. Examples of sandy coast sites where abundance of Lolium

was (a) apparently zero, (b) low, and (c) high.

Figure S4. Values of cross-validation error for each K in the analysis

conducted using Admixture 1.3.0.

Table S1. Number of contaminant seeds used for each experiment.

Table S2. Number of individuals from cultivated varieties used for

each experiment.

Table S3. Number of individuals from naturalised populations used

for each experiment.

Table S4. Sampling locations and number of individuals in the field

populations used in each experiment.

Table S5. Summary of the results of principal component analysis of

13 morphological characteristics of Lolium species.

Table S6. Pairwise relative gene flow rates for the 11 populations.

How to cite this article: Hirata, M., Higuchi, Y., Matsuo, A.,

Sato, M. P., Suyama, Y., Kiyoshi, T., Konuma, A., Tominaga, T.,

& Shimono, Y. (2023). Introduction pathways and

evolutionary mechanisms of alien species of Lolium spreading

across sandy coasts in Japan. Journal of Ecology, 111,

2583–2596. https://doi.org/10.1111/1365-2745.14206

13652745, 2023, 12, Downloaded from https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2745.14206 by Cochrane Japan, Wiley Online Library on [27/02/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

2596 ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る