リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「心疾患患者における腎機能障害のステージ毎の最高酸素摂取量の規定因子」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

心疾患患者における腎機能障害のステージ毎の最高酸素摂取量の規定因子

尾倉, 朝美 オクラ, アサミ Ogura, Asami 神戸大学

2023.03.25

概要

The prevalence of chronic kidney disease (CKD) is increasing steadily around the world, and
a “CKD epidemic” is being warned against [1]. As well, the rate of complications from renal
dysfunction in patients with heart disease is also rising. In recent reports, the proportion of
patients with renal dysfunction was 48% for those with coronary artery disease [2], 41% for
heart failure with reduced ejection fraction [3], and 51% for heart failure with preserved
ejection fraction [4]. In fact, about half of all heart disease patients have renal dysfunction.

These patients have lower peak oxygen uptake (peak VO2) [5], and it decreases as renal

dysfunction progresses [6]. Lower peak VO2 is a serious problem in this cohort as it is a

predictor of cardiovascular events and mortality [6-8]. To improve peak VO2, it is necessary

to verify the cause of the low peak VO2 and take appropriate countermeasures. However, the

factors that influence low peak VO2 in heart disease patients are diverse [9], and the addition
of renal dysfunction further complicates the search for causative factors [10]. This problem
cannot be overlooked in improving the prognosis of heart disease patients with renal
dysfunction. ...

この論文で使われている画像

参考文献

[1]

Ng JK, Li PK. Chronic kidney disease epidemic: How do we deal with it? Nephrology

(Carlton) 2018; 4: 116–120.

[2]

Tanaka K, Jujo K, Yamaguchi Y, Ogawa H. Hagiwara N. Optimal blood pressure in

patients with coronary artery disease and chronic kidney disease: HIJ-CREATE

substudy. Am J Med Sci 2019; 358: 219-226.

[3]

Jhund PS, Solomon SD, Docherty KF, Heerspink HJL, Anand IS, Böhm M, et al.

Efficacy of dapagliflozin on renal function and outcomes in patients with heart failure

with reduced ejection fraction: results of DAPA-HF. Circulation; 2021;143: 298–309.

[4]

Patel RB, Mehta R, Redfield MM, Borlaug BA, Hernandez AF, Shah SJ, et al. Renal

dysfunction in heart failure with preserved ejection fraction: insights from the RELAX

Trial. J Card Fail 2020; 26: 233–242.

[5]

Takaya Y, Kumasaka R, Arakawa T, Ohara T, Nakanishi M, Noguchi T, et al. Impact

of cardiac rehabilitation on renal function in patients with and without chronic kidney

disease after acute myocardial infarction. Circ J 2014; 78: 377-384.

[6]

Scrutinio D, Agostoni P, Gesualdo L, Corrà U, Mezzani A, Piepoli M, et al. Metabolic

Exercise test data combined with Cardiac and Kidney Indexes (MECKI) Score

Research Group. Renal function and peak exercise oxygen consumption in chronic

heart failure with reduced left ventricular ejection fraction, Circ. J. 79 (2015) 583–591.

[7]

Ezzatvar Y, Izquierdo M, Núñez J, Calatayud J, Ramírez-Vélez R, García-Hermoso A.

Cardiorespiratory fitness measured with cardiopulmonary exercise testing and

mortality in patients with cardiovascular disease: a systematic review and metaanalysis. J Sport Health Sci 2021; 10: 609–619.

[8]

Cahalin LP, Chase P, Arena R, Myers J, Bensimhon D, Peberdy MA, et al. A metaanalysis of the prognostic significance of cardiopulmonary exercise testing in patients

with heart failure. Heart Fail Rev 2013; 18: 79–94.

[9]

Del Buono MG, Arena R, Borlaug BA, Carbone S, Canada JM, Kirkman DL, et al.

Exercise intolerance in patients with heart failure: JACC State-of-the-Art Review. J

Am Coll Cardiol 2019; 73: 2209–2225.

[10]

Van Craenenbroeck AH, Van Craenenbroeck EM, Van Ackeren K, Hoymans VY,

Verpooten GA, Vrints CJ, et al. Impaired vascular function contributes to exercise

intolerance in chronic kidney disease. Nephrol Dial Transplant 2016; 31: 2064–2072.

[11]

Ronco C, Bellasi A, Lullo LD. Cardiorenal syndrome: an overview. Adv Chronic

Kidney Dis 2018; 25: 382–390.

[12]

Chinnappa S, Lewis N, Baldo O, Shih MC, Tu YK, Mooneyet A. Cardiac and

noncardiac determinants of exercise capacity in CKD. J Am Soc Nephrol 2021; 32:

1813–1822..

[13]

Binder RK, Wonisch M, Corra U, Cohen-Solal A, Vanhees L, Saner H, et al.

Methodological approach to the first and second lactate threshold in incremental

cardiopulmonary exercise testing. Eur J Cardiovasc Prev Rehabil 2008; 15: 726–734.

[14]

Salvadori A, Fanari P, Mazza P, Agosti R, Longhini E. Work capacity and

cardiopulmonary adaptation of the obese subject during exercise testing. Chest 1992;

101:674–679.

[15]

Baumbach P, Schmidt-Winter C, Hoefer J, Derlien S, Best N, Herbsleb M, et al. A

pilot study on the association of mitochondrial oxygen metabolism and gas exchange

during cardiopulmonary exercise testing: Is there a mitochondrial threshold? Front

Med (Lausanne) 2020; 7: 585462.

[16]

Ogura A, Izawa KP, Sato S, Tawa H, Kureha F, Wada M, Kanai M, Kubo I, Brubaker

PH, Yoshikawa R, Matsuda Y. Relationship of end-tidal oxygen partial pressure to the

determinants of anaerobic threshold in post-myocardial infarction patients. Heart

Vessels 2021; 36: 1811–1817.

[17]

Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, et al. American Heart

Association Exercise, Cardiac Rehabilitation, and Prevention Committee of the

Council on Clinical Cardiology; Council on Epidemiology and Prevention; Council on

Peripheral Vascular Disease; Interdisciplinary Council on Quality of Care and

Outcomes Research. Clinician’s guide to cardiopulmonary exercise testing in adults: a

scientific statement from the American Heart Association. Circulation 2010; 122: 191–

255.

[18]

L.S. Pescatello. ACSM’s Guidelines for Exercise Testing and Prescription.

Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health, 2014:151.

[19]

Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Collaborators

developing the Japanese equation for estimated GFR. Revised equation for estimated

GFR from serum creatinine in Japan. Am J Kidney Dis 2009; 53: 982–992.

[20]

Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work

Group, KDIGO clinical practice guideline for acute kidney injury. Kidney Int 2012; 2:

1–138.

[21]

McCullough PA, Franklin BA, Leifer E, Fonarow GC. Impact of reduced kidney

function on cardiopulmonary fitness in patients with systolic heart failure. Am J

Nephrol 2010; 32: 226–233.

[22]

Kinugawa S, Takada S, Matsushima S, Okita K, Tsutsui H. Skeletal muscle

abnormalities in heart failure. Int Heart J 2015; 56: 475–484

[23]

Keshavarz-Bahaghighat H, Darwesh AM, Sosnowski DK, Seubert JM. Mitochondrial

dysfunction and inflammaging in heart failure: novel roles of CYP-derived

epoxylipids. Cells 2020; 9: 1565.

[24]

Poznyak AV, Ivanova EA, Sobenin IA, Yet SF, Orekhov AN. The role of mitochondria

in cardiovascular diseases. Biology (Basel) 2020; 9: 137.

[25]

Yokoi H, Yanagita M, Decrease of muscle volume in chronic kidney disease: the role

of mitochondria in skeletal muscle. Kidney Int 2014; 85: 1258–1260.

[26]

Alcalde-Estévez E, Sosa P, Asenjo-Bueno A, Plaza P, Olmos G, Naves-Díaz M, ey al.

Uraemic toxins impair skeletal muscle regeneration by inhibiting myoblast

proliferation, reducing myogenic differentiation, and promoting muscular fibrosis. Sci

Rep 2021; 11: 512.

[27]

Yazdi PG, Moradi H, Yang JY, Wang PH, Vaziri ND. Skeletal muscle mitochondrial

depletion and dysfunction in chronic kidney disease. Int J Clin Exp Med 2013; 6: 532–

539.

[28]

Adey D, Kumar R, McCarthy JT, Nair KS. Reduced synthesis of muscle proteins in

chronic renal failure. Am J Physiol Endocrinol Metab 2000; 278: E219–E225.

[29]

Roibal Pravio J, Barge Caballero E, Barbeito Caamaño C, Paniagua Martin MJ, Barge

Caballero G, Couto Mallon D, et al. Determinants of maximal oxygen uptake in

patients with heart failure. ESC Heart Fail 2021; 8: 2002–2008.

[30]

Guimarães GV, Ribeiro F, Castro RE, Roque JM, Machado ADT, Antunes-Correa LM,

et al. Effects of the exercise training on skeletal muscle oxygen consumption in heart

failure patients with reduced ejection fraction. Int J Cardiol 2021; 343: 73–79.

[31]

Tedeschi A, Agostoni P, Pezzuto B, Corra' U, Scrutinio D, La Gioia R, et al. Role of

comorbidities in heart failure prognosis Part 2: Chronic kidney disease, elevated serum

uric acid. Eur J Prev Cardiol 2020; 27: 35–45.

[32]

Zhang S, Zhang F, Du M, Huang K, Wang C. Efficacy and safety of iron

supplementation in patients with heart failure and iron deficiency: a meta-analysis. Br

J Nutr 2019; 121: 841-848.

[33]

Mafra D, Gidlund EK, Borges NA, Magliano DC, Lindholm B, Stenvinkel P, et al.

Bioactive food and exercise in chronic kidney disease: Targeting the mitochondria.

Eur J Clin Invest 2018; 48: e13020.

[34]

Gu C, Yan J, Zhao L, Wu G, Wang YL. Regulation of mitochondrial dynamics by

aerobic exercise in cardiovascular diseases. Front Cardiovasc Med 2022; 13:788505.

[35]

Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito

MA, et al. Towards frailty biomarkers: Candidates from genes and pathways regulated

in aging and age-related diseases. Ageing Res Rev 2018; 47: 214–277.

[36]

Kameda M, Teruya T, Yanagida M, Kondoh H. Reduced uremic metabolites are

prominent feature of sarcopenia, distinct from antioxidative markers for frailty. Aging

(Albany NY) 2021; 13: 20915–20934.

[37]

Potok OA, Ix JH, Shlipak MG, Katz R, Hawfield AT, Rocco MV, et al. The difference

between cystatin C- and creatinine-based estimated GFR and associations with frailty

and adverse outcomes: a cohort analysis of the systolic blood pressure intervention

trial (SPRINT). Am J Kidney Dis 2020; 76: 765–774.

[38]

Damman K, Testani JM. The kidney in heart failure: an update. Eur Heart J 2015; 36:

1437–1444.

Gu C, Yan J, Zhao L, Wu G, Wang YL. Regulation of mitochondrial dynamics by

aerobic exercise in cardiovascular diseases. Front Cardiovasc Med 2022; 13:788505.

Table 1

Patient characteristics and CPET parameters.

eGFR <45

eGFR 45–59

eGFR ≥60

(n=30)

(n=59)

(n=112)

Age, years

71.4 ± 7.7

67.8 ± 7.8

Male, n (%)

29 (96.7)

Body mass index, kg/m2

P- value

eGFR <45 vs.

eGFR 45–59 vs.

eGFR <45 vs.

eGFR 45–59

eGFR ≥60

eGFR ≥60

61.2 ± 10.8

0.300

<0.001

<0.0001

50 (84.7)

104 (92.9)

0.46

0.33

23.2 ± 2.8

23.1 ± 3.2

23.8 ± 2.9

0.45

0.88

MI, n (%)

19 (63.3)

43 (72.9)

86 (76.8)

0.63

AP, n (%)

0 (0)

4 (6.8)

16 (14.3)

0.887

0.632

0.071

CHF, n (%)

24 (80.0)

19 (32.2)

25 (22.3)

<0.001

0.666

<0.001

LVEF, (%)

51.2 (38.9–54.4)

58.7 (49.0–65.4)

59.3 (51.5–68.2)

0.090

0.384

<0.001

Hypertension, n (%)

24 (80.0)

36 (61.0)

74 (66.1)

0.35

0.64

Diabetes, n (%)

17 (56.7)

20 (33.9)

36 (32.1)

0.201

0.073

36.8 (32.2–40.5)

54.6 (51.7–57.0)

71.2 (65.2–80.0)

<0.001

<0.001

<0.001

12.7 ± 1.8

13.3 ± 1.5

14.2 ± 1.3

0.221

<0.001

<0.001

Beta blockers, n (%)

23 (76.7)

45 (77.6)

72 (64.9)

0.38

0.95

ACE-I, n (%)

8 (26.7)

9 (15.3)

33 (29.5)

0.94

0.19

ARB, n (%)

15 (50.0)

24 (40.7)

39 (34.8)

0.57

CCB, n (%)

9 (30.0)

6 (10.2)

21 (18.8)

0.12

0.64

0.83

Diuretics, n (%)

19 (63.3)

16 (27.1)

14 (12.5)

0.006

0.088

<0.001

Statin, n (%)

19 (63.3)

49 (83.1)

95 (84.8)

0.212

0.054

16.2 ± 3.9

19.7 ± 4.7

23.0 ± 4.5

0.002

<0.001

<0.001

70.6 ± 16.4

82.8 ± 18.7

92.8 ± 19.0

0.011

0.003

<0.001

10.9 ± 2.1

12.4 ± 2.5

14.0 ± 2.6

0.029

<0.001

<0.001

Peak RER

1.20 ± 0.05

1.20 ± 0.06

1.18 ± 0.06

0.086

0.382

AT RER

0.96 ± 0.02

0.96 ± 0.03

0.95 ± 0.04

0.14

0.11

Peak WR, watts

VE vs. VCO2 slope

. .

Minimum VE/VCO2

86.2 ± 17.2

102.3 ± 28.6

122.9 ± 28.3

0.028

<0.001

<0.001

33.9 (30.8–38.5)

30.6 (27.9–33.5)

29.2 (26.3–31.7)

0.007

0.137

<0.001

36.1 (33.5–39.9)

33.9 (30.9–37.4)

30.8 (28.8–34.5)

0.173

0.002

<0.001

8.6 ± 2.0

9.6 ± 2.5

11.1 ± 2.2

0.181

<0.001

<0.001

8.1 ± 1.6

8.8 ± 1.4

9.4 ± 1.3

0.051

0.030

<0.001

Laboratory values

eGFR, mL/min/1.73m2

Hemoglobin, g/dL

Medications

CPET parameters

Peak VO2, mL/min/kg

%Peak VO2, %

AT VO2, mL/min/kg

Peak O2 pulse

ΔVO2/ΔWR

Rest PETO2, mmHg

107.2 ± 5.5

107.8 ± 4.9

108.1 ± 4.2

0.88

AT PETO2, mmHg

107.1 ± 5.4

105.0 ± 5.5

102.4 ± 4.7

0.216

0.004

<0.001

0.1 (-1.1–1.4)

2.4 (0.8–4.0)

5.2 (3.7–7.4)

<0.001

<0.001

<0.001

ΔPETO2, mmHg

CPET, cardiopulmonary exercise testing; eGFR, estimated glomerular filtration rate; MI, myocardial infarction; AP, angina pectoris; CHF,

chronic heart failure; LVEF, left ventricular ejection fraction; ACE-I, angiotensin converting enzyme inhibitor; ARB, angiotensin II

receptor blocker; CCB, calcium channel blocker; VO2, oxygen uptake; AT, anaerobic threshold; RER, respiratory exchange ratio; WR,

. .

work rate; VE, expiratory minute volume; VCO2, carbon dioxide output; VE/VCO2, ventilatory equivalent for carbon dioxide; O2, oxygen;

PETO2, end-tidal oxygen partial pressure.

Values shown are % (n), mean ± standard deviation, or median (interquartile range).

Table 2

Univariate and multivariate linear regression analyses for peak VO2 in all subjects.

Univariate

Multivariate

P-value

95% CI

P-value

Age

-0.451

<0.001

-0.142

-0.128, -0.009

0.023

LVEF

0.113

<0.001

0.150

0.018, 0.110

0.006

eGFR strata

0.508

<0.001

0.154

0.128, 2.000

0.026

Hb

0.148

<0.001

0.167

0.164, 0.914

0.005

ΔPETO2

0.552

<0.001

0.356

0.308, 0.690

<0.001

Rest PETO2

0.121

0.020

-0.194

-0.335, -0.092

<0.001

R2

0.462

VO2, oxygen uptake; CI, confidence interval; LVEF, left ventricular ejection fraction; eGFR, estimated

glomerular filtration rate; Hb, hemoglobin; PETO2, end-tidal oxygen partial pressure.

Table 3

Univariate and multivariate linear regression analyses for peak VO2 by eGFR strata.

Univariate

P-value

Age

-0.358

0.052

LVEF

0.572

Hb

Multivariate

95% CI

P-value

<0.001

0.518

0.086, 0.229

<0.001

0.616

<0.001

0.567

0.728, 1.766

<0.001

ΔPETO2

0.175

0.356

Rest PETO2

0.121

0.059

eGFR <45 group

R2

0.620

eGFR 45–59 group

-0.354

-0.297, -0.052

0.006

0.004

0.258

0.241, 1.449

0.007

0.523

<0.001

0.501

0.402, 1.013

<0.001

0.062

0.058

-0.181

-0.384, -0.016

0.035

Age

-0.521

<0.001

LVEF

0.183

0.166

Hb

0.365

ΔPETO2

Rest PETO2

R2

0.538

eGFR ≥60 group

Age

-0.236

0.012

-0.215

-0.140, 0.017

0.125

LVEF

0.198

0.036

0.146

-0.014, 0.137

0.113

Hb

0.078

0.416

ΔPETO2

0.314

<0.001

0.308

0.154, 0.716

0.003

Rest PETO2

0.036

0.045

-0.193

-0.154, -0.013

0.037

R2

0.194

VO2, oxygen uptake; CI, confidence interval; eGFR, estimated glomerular filtration rate; LVEF, left ventricular

ejection fraction; Hb, hemoglobin; PETO2, end-tidal oxygen partial pressure.

Figure 1. Comparison of the change in end-tidal oxygen partial pressure (ΔPETO2) at

different values of estimated glomerular filtration rate (eGFR).

Figure 2. Coefficients of determination for peak V̇O2 for each group. Coefficients of

determination of the (a) age, (b) left ventricular ejection fraction (LVEF), (c) hemoglobin

(Hb), and (d) change in end-tidal oxygen partial pressure (∆PETO2) to peak V̇O2 for each

group.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る