リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effects of dietary variation on lignocellulose degradation and physiological properties of Nicobium hirtum larvae」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effects of dietary variation on lignocellulose degradation and physiological properties of Nicobium hirtum larvae

Krishanti, Ni Putu Ratna Ayu Tobimatsu, Yuki Afifi, Osama Ahmed Tarmadi, Didi Himmi, Setiawan Khoirul Umezawa, Toshiaki Ohmura, Wakako Yoshimura, Tsuyoshi 京都大学 DOI:10.1186/s10086-022-02074-x

2023.01.06

概要

We investigated the feeding behavior of larvae of the wood-destroying beetle Nicobium hirtum (Coleoptera: Anobiidae), an important wood pest in Japan, to determine the effects of dietary variation on lignocellulose degradation and larval growth and survival. Cultured colonies of N. hirtum larvae were fed artificial diets containing various amounts of starch (20, 50, and 80 wt%) mixed with hardwood (Shorea) lignocellulose. The polysaccharide degradation by N. hirtum was determined by chemical analyses of the initial artificial diets and fecal residues collected during the feeding experiment. Starch was preferentially decomposed when the larvae were fed the high-starch diet, whereas the decompositions of cellulose and hemicelluloses were more prominent when the larvae were fed medium- or low-starch diets. The larvae’s size and survival were recorded periodically to determine the diets’ effects on larval development. The survival rates ranged from 60 to 87% and were highest for the larvae fed the medium-starch diet and lowest for those fed the high-starch diet. Body size was highest in the larvae fed the high-starch diet. Fecal size increased along with the larval size increase. Overall, these results suggest that although starch is an essential carbon source for N. hirtum larval growth, lignocellulose also plays a key role as a nutrient that maintains the physiological activities of N. hirtum larvae and enhances their survival.

この論文で使われている画像

参考文献

1. Creffield JW (1996) Wood destroying insect: wood borers and termites.

CSIRO Publishing, Melbourne

2. Ewart D (2014) Urban timber pest beetles: risks and management. In:

Dhang P (ed) Urban insect pests: sustainable management strategies.

CABI Publishing, Oxfordshire

3. Mito T, Uesugi T (2004) Invasive alien species in Japan: the status quo and

the new regulation for prevention of their adverse effects. Glob Environ

Res 8:171–193

4. Lewis V, Forschler B (2014) Management of drywood termites: past

practices, present situation, and future prospects. In: Dhang P (ed)

Urban insect pests: sustainable management strategies. CABI Publishing,

Oxfordshire

5. Pournou A (2020) Wood deterioration by insects. In: Anastasia P (ed)

Biodeterioration of wooden cultural heritage. Springer, Cham

6. Yamano K (2003) Insect damage to wooden cultural properties and

countermeasures. Wood Ind 58:576–581 (in Japanese)

7. Komine Y (2019) The deathwatch beetles as a pest to cultural properties.

Tobunkennews 69:45–47 (in Japanese)

8. Parkin EA (1940) The digestive enzymes of some wood-boring beetle

larvae. J Exp Biol 17:364–377. https://​doi.​org/​10.​1242/​jeb.​17.4.​364

9. Robinson WH (2005) Handbook of urban insects and arachnids. Cambridge University Press, Cambridge

10. Resh VH, Carde RT (2009) Insecta overview. In Encyclopedia of insects, 5th

edn. Academic Press, London

11. Potter MF (1993) Diagnosis, management of powder-post beetles. Pest

Control Technol 21(4):10

12. Jackman JA. Structure-infesting wood-boring beetles. Texas A&M AgriLife

Extension. https://​count​ies.​agril​ife.​org/​liber​ty/​files/​2020/​05/​Struc​ture-​

Infes​ting-​Wood-​Boring-​Beetl​es-​Publ.-E-​394.​pdf. Accessed 30 Nov 2022.

13. Chiappini E, Aldini RN (2011) Morphological and physiological adaptations of wood-boring beetle larvae in timber. J Ent Acarol Res Ser II

43:47–59. https://​doi.​org/​10.​4081/​jear.​2011.​47

14. Douglas AE (2009) Nutritional ecology: the microbial dimension in insect

nutritional ecology. Func Ecol 23:38–47. https://​doi.​org/​10.​1111/j.​1365-​

2435.​2008.​01442.x

15. Dohet L, Gregoire JC, Berasategui A, Kaltenpoth M, Biedermannm HW

(2016) Bacterial and fungal symbionts of parasitic Dendroctonus bark

beetles. FEMS Microbiol Ecol 92:1–12. https://​doi.​org/​10.​1093/​femsec/​

fiw129

16. Garcia-Fraile P (2017) Roles of bacteria in the bark beetle halobiont - how

do they shape this forest pest? Ann Appl Biol 172:111–125. https://​doi.​

org/​10.​1111/​aab.​12406

17. McKenna DD, Shin S, Ahrens D, Balke M, Beza-Beza C, Clarke DJ, Beutel

RG (2019) The evolution and genomic basis of beetle diversity. Proc Natl

Acad Sci 116:24729–24737. https://​doi.​org/​10.​1073/​pnas.​19096​55116

Page 8 of 9

18. Goodell B, Winandy JE, Morrell JJ (2020) Fungal degradation of wood:

emerging data, new insights, and changing perceptions. Coatings

10:1210. https://​doi.​org/​10.​3390/​coati​ngs10​121210

19. Kartika T, Yoshimura T (2015) Evaluation of wood and cellulosic materials

as fillers in artificial diets for Lyctus africanus Lesne (Coleoptera: Bostrichidae). Insects 6:696–703. https://​doi.​org/​10.​3390/​insec​ts603​0696

20. Tremmel M, Muller C (2013) Insect personality depends on environmental conditions. Behav Ecol 24:386–392. https://​doi.​org/​10.​1093/​beheco/​

ars175

21. Tremmel M, Muller C (2014) Diet dependent experience and physiological state shape the behavior of a generalist herbivore. Physiol Behav

129:95–103. https://​doi.​org/​10.​1016/j.​physb​eh.​2014.​02.​030

22. Naya DE, Lardies MA, Bozinovic F (2007) The effect of diet quality on

physiological and life-history traits in the harvestman Pachylus paessleri. J

Insect Physiol 53:132–138. https://​doi.​org/​10.​1016/j.​jinsp​hys.​2006.​11.​004

23. Borzoui E, Naseri B, Namin FR (2015) Different diets affecting biology and

digestive physiology of the kapra beetle, Trogoderma granarium everts

(coleoptera: dermestidae). J Stored Prod Res 62:1–7. https://​doi.​org/​10.​

1016/j.​jspr.​2015.​03.​003

24. Borzoui E, Naseri B (2016) Wheat cultivars affecting life history and digestive amylolytic activity of Sitotroga cerealella olivier (lepidoptera: gelechiidae). Bull Entomol Res 106:464–473. https://​doi.​org/​10.​1017/​s0007​48531​

60001​6x

25. Fujimoto I, Yoshimura T (2018) Establishment of mass cultures of woodattacking beetles. Sustain Humanosp 14:13

26. Krishanti NPRA, Tobimatsu Y, Miyamoto T, Fujimoto I, Kartika T, Umezawa

T, Hata T, Yoshimura T (2022) Structural basis of lignocellulose deconstruction by the wood-feeding anobiid beetle Nicobium hirtum. J Wood Sci

68:10. https://​doi.​org/​10.​1186/​s10086-​022-​02017-6

27. Kartika T, Nobuhiro S, Yoshimura T (2015) Identification of esters as novel

aggregation pheromone components produced by the male powderpost beetle, Lyctus africanus Lesne (coleoptera: lyctinae). PLoS ONE

10:e0141799. https://​doi.​org/​10.​1371/​journ​al.​pone.​01417​99

28. Kartika T, Shimizu N, Himmi SK, Guswenrivo I, Tarmadi D, Yusuf S,

Yoshimura T (2021) Influence of age and mating status on pheromone

production in a powder-post beetle Lyctus africanus (coleoptera: lyctinae). Insects 12:8. https://​doi.​org/​10.​3390/​insec​ts120​10008

29. Zega SLD, Fajar A, Himmi SK, Adi DS, Tarmadi D, Nandika D, Yusuf S (2020)

Examination of fecal pellet physical characteristics of an invasive drywood termite, Cryptotermes dudleyi (isoptera: kalotermitidae): a potential

approach for species marker and non-destructive monitoring method.

IOP Conf Ser Mater Sci Eng 935:012050

30. Hattori T, Murakami S, Mukai M, Yamada T, Hirochika H, Ike M, Tokuyasu

K, Suzuki S, Sakamoto M, Umezawa T (2012) Rapid analysis of transgenic

rice straw using near-infrared spectroscopy. Plant Biotechnol 29:359–366.

https://​doi.​org/​10.​5511/​plant​biote​chnol​ogy.​12.​0501a

31. Lam PY, Tobimatsu Y, Takeda Y, Suzuki S, Yamamura M, Umezawa T, Lo C

(2017) Disrupting flavone synthase II alters lignin and improves biomass

digestibility. Plant Physiol 174:972–985. https://​doi.​org/​10.​1104/​pp.​16.​

01973

32. Tarmadi D, Tobimatsu Y, Yamamura M, Miyamoto T, Miyagawa Y, Umezawa

T, Yoshimura T (2018) NMR studies on lignocellulose deconstructions in

the digestive system of the lower termite Coptotermes formosanus Shiraki.

Sci Rep 8:1290. https://​doi.​org/​10.​1038/​s41598-​018-​19562-0

33. Suzuki S, Suzuki Y, Yamamoto N, Hattori T, Sakamoto M, Umezawa T (2009)

High-throughput determination of thioglycolic acid lignin from rice. Plant

Biotechnol 26:337–340. https://​doi.​org/​10.​5511/​plant​biote​chnol​ogy.​26.​

337

34. Yamamura M, Hattori T, Suzuki S, Shibata D, Umezawa T (2012) Microscale

thioacidolysis method for the rapid analysis of substructures in lignin.

Plant Biotechnol 29:419–423. https://​doi.​org/​10.​5511/​plant​biote​chnol​

ogy.​12.​0627a

35. Tokuda G (2019) Plant cell wall degradation in insects: recent progress on

endogenous enzymes revealed by multi-omics technologist. Adv Insect

Physiol 57:97–136. https://​doi.​org/​10.​1146/​annur​ev-​ento-​112408-​085319

36. Watanabe H, Tokuda G (2010) Cellulolytic systems in insects.

Annu Rev Entomol 55:609–632. https://​doi.​org/​10.​1146/​annur​

ev-​ento-​112408-​085319

37. Katsumata KS, Jin Z, Hori K, Iiyama K (2007) Structural changes in lignin of

tropical woods during digestion by termite Cryptotermes brevis. J Wood

Sci 53:419–426. https://​doi.​org/​10.​1007/​s10086-​007-​0882-z

Krishanti et al. Journal of Wood Science

(2023) 69:2

38. Geib SM, Filley TR, Hatcher PG, Hoover K, Carlson JE, Jimenez-Gasco MdM,

Nakagawa-Izumi A, Sleighter RL, Tien M (2008) Lignin degradation in

wood-feeding insects. Proc Natl Acad Sci USA 105:12932–12937. https://​

doi.​org/​10.​1073/​pnas.​08052​57105

39. Ke J, Laskar DD, Singh D, Chen S (2011) In situ lignocellulosic unlocking

mechanisms for carbohydrate hydrolysis in termites: crucial lignin modification. Biotechnol Biofuel 4:1–12. https://​doi.​org/​10.​1186/​1754-​6834-4-​17

40. Ceja-Navarro JA, Karaoz U, Bill M, Hao Z, White RA III, Ramanculova L et al

(2019) Gut anatomical properties and microbial functional assembly

promote lignocellulose deconstruction and colony subsistence of a

wood-feeding beetle. Nat Microbiol 4:864–875. https://​doi.​org/​10.​1038/​

s41564-​019-​0384-y

41. Dumond L, Lam P, G-van E, Kabel M, Mounet F, Grima-Pettenati G, Tobimatsu Y, Hernandez-Raquet G (2021) Termite gut microbiota contribution

to wheat straw delignification in anaerobic bioreactors. ACS Sustain

Chem Eng 9:2191–2202. https://​doi.​org/​10.​1021/​acssu​schem​eng.​0c078​

17

42. Shafiei M, Moczek AP, Nijhout HF (2001) Food availability controls the

onset of metamorphosis in the dung beetle, Onthophagus taurus

(Coleoptera: Scarabaeidae). Physiol Entomol 26:173–180. https://​doi.​org/​

10.​1046/j.​1365-​3032.​2001.​00231.x

43. Emlen DJ (1997) Diet alters male horn allometry in the beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Proc R Soc Lond Series Biol

Sci 264:567–574. https://​doi.​org/​10.​1098/​rspb.​1997.​0081

44. Karino K, Seki N, Chiba M (2004) Larval nutritional environment determines adult size in Japanese horned beetles, Allomyrina dichotoma. Ecol

Res 19:663–668. https://​doi.​org/​10.​1111/j.​1440-​1703.​2004.​00681.x

45. Gotoh H, Fukaya K, Miura T (2012) Heritability of male mandible length in

the stag beetle Cyclommatus metallifer. Entomol Sci 15:430–433. https://​

doi.​org/​10.​1111/j.​1479-​8298.​2012.​00527.x

46. Harvey DJ, Gange AC (2006) Size variation and mating success in the stag

beetle, Lucanus cervus. Physiol Entomol 31:218–226. https://​doi.​org/​10.​

1111/j.​1365-​3032.​2006.​00509.x

47. Gotoh H, Cornette R, Koshikawa S, Okada Y, Lavine LC, Emlen DJ, Miura

T (2011) Juvenile hormone regulates extreme mandible growth in male

stag beetles. PLoS ONE 6:e21139. https://​doi.​org/​10.​1371/​journ​al.​pone.​

00211​39

48. Chen Y, Ni X, Buntin GD (2008) Nitrogen fertilization rate affects feeding,

larval performance, and oviposition preference of the beet armyworm,

Spodoptera exigua, on cotton. Entomol Exp Appl 126:244–255. https://​doi.​

org/​10.​1111/j.​1570-​7458.​2007.​00662.x

49. Tarmadi D, Yoshimura T, Tobimatsu Y, Yamamura M, Umezawa T (2017)

Effects of lignin as diet components on the physiological activities of a

lower termite, Coptotermes formosanus Shiraki. J Insect Physiol 103:57–63.

https://​doi.​org/​10.​1016/j.​jinsp​hys.​2017.​10.​006

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Page 9 of 9

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る