リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Creation of NV centers over a millimeter-sized region by intense single-shot ultrashort laser irradiation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Creation of NV centers over a millimeter-sized region by intense single-shot ultrashort laser irradiation

Fujiwara, Masanori Inoue, Shunsuke Masuno, Shin-ichiro Fu, Haining Tokita, Shigeki Hashida, Masaki Mizuochi, Norikazu 京都大学 DOI:10.1063/5.0137093

2023.03

概要

Recently, ultrashort laser processing has attracted attention for creating nitrogen-vacancy (NV) centers because this method can create single NV centers in spatially-controlled positions, which is an advantage for quantum information devices. On the other hand, creating high-density NV centers in a wide region is also important for quantum sensing because the sensitivity is directly enhanced by increasing the number of NV centers. A recent study demonstrated the creation of high-density NV centers by irradiating femtosecond laser pulses, but the created region was limited to micrometer size, and this technique required many laser pulses to avoid graphitization of diamond. Here, we demonstrate the creation of NV centers in a wide region using only an intense single femtosecond laser pulse irradiation. We irradiated a diamond sample with a femtosecond laser with a focal spot size of 41 µm and a laser fluence of up to 54 J/cm², which is much higher than the typical graphitization threshold in multi-pulse processing. We found that single-pulse irradiation created NV centers without post-annealing for a laser fluence higher than 1.8 J/cm², and the region containing NV centers expanded with increasing laser fluence. The diameter of the area was larger than the focal spot size and reached over 100 µm at a fluence of 54 J/cm². Furthermore, we demonstrated the NV centers' creation in a millimeter-sized region by a single-shot defocused laser pulse over 1100 µm with a fluence of 33 J/cm². The demonstrated technique will bring interest in the fundamentals and applications of fabricating ultrahigh-sensitivity quantum sensors.

この論文で使われている画像

参考文献

In summary, the generation of NV centers in synthetic bulk

diamond was investigated using high-fluence and large-spot femtosecond laser pulses. NV centers were effectively created by singlepulse irradiation. Two focused-spot shapes, circular and linear, were

investigated; the latter may be useful to create NV centers rapidly

over a large region without post-annealing by line scanning. The

size of the created region was expanded for a higher laser fluence,

probably due to laser–diamond surface and laser–air interactions.

Furthermore, the NV center creation over a millimeter-sized spot

was demonstrated by a large defocused spot in a vacuum condition.

We expect that a raster scanning of the defocused spot with a suitable mask generates NV centers over a centimeter-sized region in a

short time. The spin-echo and FID signals showed that P1 centers

restricted the length of T 2 and T 2 ∗ for the irradiated region, and

single-pulse laser ablation had little influence on T 2 and T 2 ∗ .

The three-dimensional (3D) formation of high-dense NV centers will be the next step to realize the high-sensitive quantum sensor

by laser irradiation. So far, NV center formation over a large region

has been limited to a few methods, such as electron irradiation and

chemical vapor deposition. The present study showed that the laser

scanning of a linear spot might realize the rapid creation of NV centers in a 3D region. The ultrashort laser irradiation method may

pave the way for a new approach to creating NV centers over a wide

region.

ACKNOWLEDGMENTS

The authors are grateful for financial support from the

(MEXT)-QLEAP project (Grant No. JPMXS0118070187), a Kakenhi

Grant-in-Aid (Grant No. 21H04653), and partial support from the

(MEXT)-QLEAP project (Grant No. JPMXS0118067395).

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Masanori Fujiwara: Formal analysis (equal); Investigation (equal);

Writing – original draft (equal). Shunsuke Inoue: Data curation

(equal); Formal analysis (equal); Investigation (equal). Shin-ichiro

Masuno: Formal analysis (supporting); Investigation (supporting).

Haining Fu: Investigation (supporting). Shigeki Tokita: Project

administration (supporting); Resources (equal). Masaki Hashida:

Formal analysis (equal); Investigation (supporting); Methodology

(equal); Validation (equal); Writing – original draft (supporting).

Norikazu Mizuochi1: Funding acquisition (equal); Project administration (equal); Supervision (lead); Writing – review & editing

(lead).

DATA AVAILABILITY

The data that support the findings of this study are available

from the corresponding author upon reasonable request.

APL Photon. 8, 036108 (2023); doi: 10.1063/5.0137093

© Author(s) 2023

scitation.org/journal/app

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien,

“Quantum computers,” Nature 464, 45 (2010).

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,”

Nat. Photonics 10, 631 (2016).

S. Pezzagna and J. Meijer, “Quantum computer based on color centers in

diamond,” Appl. Phys. Rev. 8, 011308 (2021).

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques,

“Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77,

056503 (2014).

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L.

Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1

(2013).

E. D. Herbschleb, H. Kato, Y. Maruyama, T. Danjo, T. Makino, S. Yamasaki,

I. Ohki, K. Hayashi, H. Morishita, M. Fujiwara, and N. Mizuochi, “Ultra-long

coherence times amongst room temperature solid-state spins,” Nat. Commun. 10,

3766 (2019).

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer,

A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810 (2008).

G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin,

C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer,

R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry

with diamond, spins under ambient conditions,” Nature 455, 648 (2008).

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro,

L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and

M. D. Lukin, “Nanoscale magnetic sensing with an individual, electronic spin in

diamond,” Nature 455, 644 (2008).

10

F. Dolde, H. Fedder, M. W. Doherty, T. Nöbauer, F. Rempp,

G. Balasubramanian, T. Wolf, F. Reinhard, L. C. L. Hollenberg, F. Jelezko,

and J. Wrachtrup, “Electric-field sensing using single diamond spins,” Nat. Phys.

7, 459 (2011).

11

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park,

and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54

(2013).

12

K. Hayashi, Y. Matsuzaki, T. Taniguchi, T. Shimo-Oka, I. Nakamura, S. Onoda,

T. Ohshima, H. Morishita, M. Fujiwara, S. Saito, and N. Mizuochi, “Optimization

of temperature sensitivity using the optically detected magnetic-resonance spectrum of a nitrogen-vacancy center ensemble,” Phys. Rev. Appl. 10, 034009

(2018).

13

M. W. Doherty, V. V. Struzhkin, D. A. Simpson, L. P. McGuinness, Y. Meng,

A. Stacey, T. J. Karle, R. J. Hemley, N. B. Manson, L. C. L. Hollenberg, and

S. Prawer, “Electronic properties and metrology applications of the diamond

NV–center under pressure,” Phys. Rev. Lett. 112, 047601 (2014).

14

T. Fujisaku, R. Tanabe, S. Onoda, R. Kubota, T. F. Segawa, F. T.-K. So,

T. Ohshima, I. Hamachi, M. Shirakawa, and R. Igarashi, “pH nanosensor using

electronic spins in diamond,” ACS Nano 13, 11726 (2019).

15

E. D. Herbschleb, H. Kato, T. Makino, S. Yamasaki, and N. Mizuochi,

“Ultra-high dynamic range quantum measurement retaining its sensitivity,” Nat.

Commun. 12, 306 (2021).

16

Y.-C. Chen, P. S. Salter, S. Knauer, L. Weng, A. C. Frangeskou, C. J. Stephen,

S. N. Ishmael, P. R. Dolan, S. Johnson, B. L. Green, G. W. Morley, M. E. Newton,

J. G. Rarity, M. J. Booth, and J. M. Smith, “Laser writing of coherent colour centres

in diamond,” Nat. Photonics 11, 77 (2017).

17

Y.-C. Chen, B. Griffiths, L. Weng, S. S. Nicley, S. N. Ishmael, Y. Lekhai,

S. Johnson, C. J. Stephen, B. L. Green, G. W. Morley, M. E. Newton, M. J. Booth,

P. S. Salter, and J. M. Smith, “Laser writing of individual nitrogen-vacancy defects

in diamond with near-unity yield,” Optica 6, 662 (2019).

18

C. J. Stephen, B. L. Green, Y. N. D. Lekhai, L. Weng, P. Hill, S. Johnson, A. C.

Frangeskou, P. L. Diggle, Y. C. Chen, M. J. Strain, E. Gu, M. E. Newton, J. M.

Smith, P. S. Salter, and G. W. Morley, “Deep three-dimensional solid-state qubit

arrays with long-lived spin coherence,” Phys. Rev. Appl. 12, 064005 (2019).

19

B. Griffiths, A. Kirkpatrick, S. S. Nicley, R. L. Patel, J. M. Zajac, G. W. Morley,

M. J. Booth, P. S. Salter, and J. M. Smith, “Microscopic processes during ultrafast

laser generation of Frenkel defects in diamond,” Phys. Rev. B 104, 174303 (2021).

8, 036108-8

APL Photonics

20

J. M. Smith, S. A. Meynell, A. C. Bleszynski Jayich, and J. Meijer, “Colour centre

generation in diamond for quantum technologies,” Nanophotonics 8, 1889 (2019).

21

V. Yurgens, J. A. Zuber, S. Flågan, M. de Luca, B. J. Shields, I. Zardo,

P. Maletinsky, R. J. Warburton, and T. Jakubczyk, “Low-Charge-noise nitrogenvacancy centers in diamond created using laser writing with a solid-immersion

lens,” ACS Photonics 8, 1726 (2021).

22

X. J. Wang, H. H. Fang, F. W. Sun, and H. B. Sun, “Laser writing of color

centers,” Laser Photonics Rev. 16, 2100029 (2021).

23

X. Gao, S. Pandey, M. Kianinia, J. Ahn, P. Ju, I. Aharonovich, N. Shivaram, and

T. Li, “Femtosecond laser writing of spin defects in hexagonal boron nitride,” ACS

Photonics 8, 994 (2021).

24

S. Castelletto, J. Maksimovic, T. Katkus, T. Ohshima, B. C. Johnson, and

S. Juodkazis, “Color centers enabled by direct femto-second laser writing in wide

bandgap semiconductors,” Nanomaterials 11, 72 (2021).

25

Y.-C. Chen, P. S. Salter, M. Niethammer, M. Widmann, F. Kaiser, R. Nagy,

N. Morioka, C. Babin, J. Erlekampf, P. Berwian, M. J. Booth, and J. Wrachtrup,

“Laser writing of scalable single color centers in silicon carbide,” Nano Lett. 19,

2377 (2019).

26

S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya, F. Jelezko, S. Onoda,

H. Sumiya, V. Khemani, C. von Keyserlingk, N. Y. Yao, E. Demler, and

M. D. Lukin, “Observation of discrete time-crystalline order in a disordered

dipolar many-body system,” Nature 543, 221 (2017).

27

E. V. Levine, M. J. Turner, P. Kehayias, C. A. Hart, N. Langellier, R. Trubko,

D. R. Glenn, R. R. Fu, and R. L. Walsworth, “Principles and techniques of the

quantum diamond microscope,” Nanophotonics 8, 1945 (2019).

28

E. Bauch, S. Singh, J. Lee, C. A. Hart, J. M. Schloss, M. J. Turner, J. F. Barry, L. M.

Pham, N. Bar-Gill, S. F. Yelin, and R. L. Walsworth, “Decoherence of ensembles

of nitrogen-vacancy centers in diamond,” Phys. Rev. B 102, 134210 (2020).

29

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and

J. Wrachtrup, “diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).

30

J. F. Barry, M. J. Turner, J. M. Schloss, D. R. Glenn, Y. Song, M. D. Lukin,

H. Park, and R. L. Walsworth, “Optical magnetic detection of single-neuron action

potentials using quantum defects in diamond,” Proc. Natl. Acad. Sci. U. S. A. 113,

14133 (2016).

31

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod.

Phys. 89, 035002 (2017).

32

S. C. Scholten, A. J. Healey, I. O. Robertson, G. J. Abrahams, D. A. Broadway,

and J.-P. Tetienne, “Widefield quantum microscopy with nitrogen-vacancy centers in diamond: Strengths, limitations, and prospects,” J. Appl. Phys. 130, 150902

(2021).

33

K. Arai, A. Kuwahata, D. Nishitani, I. Fujisaki, R. Matsuki, Y. Nishio, Z. Xin,

X. Cao, Y. Hatano, S. Onoda, C. Shinei, M. Miyakawa, T. Taniguchi, M. Yamazaki,

T. Teraji, T. Ohshima, M. Hatano, M. Sekino, and T. Iwasaki, “Millimetre-scale

magnetocardiography of living rats with thoracotomy,” Commun. Phys. 5, 200

(2022).

34

T. Kurita, Y. Shimotsuma, M. Fujiwara, M. Fujie, N. Mizuochi, M. Shimizu,

and K. Miura, “Direct writing of high-density nitrogen-vacancy centers inside

diamond by femtosecond laser irradiation,” Appl. Phys. Lett. 118, 214001 (2021).

35

V. V. Kononenko, I. I. Vlasov, V. M. Gololobov, T. V. Kononenko,

T. A. Semenov, A. A. Khomich, V. A. Shershulin, V. S. Krivobok, and

V. I. Konov, “Nitrogen-vacancy defects in diamond produced by femtosecond

laser nanoablation technique,” Appl. Phys. Lett. 111, 081101 (2017).

36

S. Inoue, S. Sakabe, Y. Nakamiya, and M. Hashida, “Jitter-free 40-fs 375-keV

electron pulses directly accelerated by an intense laser beam and their application

to direct observation of laser pulse propagation in a vacuum,” Sci. Rep. 10, 20387

(2020).

37

C. Schreyvogel, V. Polyakov, R. Wunderlich, J. Meijer, and C. E. Nebel “Active

charge state control of single NV centres in diamond by in-plane Al-Schottky

junction,” Sci. Rep. 5 12160 (2015).

APL Photon. 8, 036108 (2023); doi: 10.1063/5.0137093

© Author(s) 2023

ARTICLE

scitation.org/journal/app

38

G. Davies, “Vibronic spectra in diamond,” J. Phys. C: Solid State Phys. 7, 3797

(1974).

39

A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. von

Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance

of single defect centers,” Science 276, 2012 (1997).

40

S. Karaveli, O. Gaathon, A. Wolcott, R. Sakakibara, O. A. Shemesh, D. S. Peterka,

E. S. Boyden, J. S. Owen, R. Yuste, and D. Englund, “Modulation of nitrogen

vacancy charge state and fluorescence in nanodiamonds using electrochemical

potential,” Proc. Natl. Acad. Sci. U. S. A. 113, 3938 (2016).

41

J. Jaske, D. W. M. Lau, X. Vidal, L. P. McGuinness, P. Reineck, B. C. Johnson,

M. W. Doherty, J. C. McCallum, S. Onoda, F. Jelezko, T. Ohsima, T. Volz,

J. H. Cole, B. C. Gibson, and A. D. Greentree, “Stimulated emission from

nitrogen-vacancy centres in diamond,” Nat. Commun. 8, 14000 (2017).

42

E. Fraczek, V. G. Savitski, M. Dale, B. G. Breeze, P. Diggle, M. Markham,

A. Bennett, H. Dhillon, M. E. Newton, and A. J. Kemp, “Laser spectroscopy of

NV−and NV0 colour centres in synthetic diamond,” Opt. Mater. Express 7, 2571

(2017).

43

Y. Liu, G. Chen, M. Song, X. Ci, B. Wu, E. Wu, and H. Zeng, “Fabrication

of nitrogen vacancy color centers by femtosecond pulse laser illumination,” Opt.

Express 21, 12843 (2013).

44

V. V. Kononenko, V. M. Gololobov, and V. I. Konov, “Latent laser-induced

graphitization of diamond,” Appl. Phys. A 122, 258 (2016).

45

T. Kurita, N. Mineyuki, Y. Shimotsuma, M. Fujiwara, N. Mizuochi, M. Shimizu,

and K. Miura, “Efficient generation of nitrogen-vacancy center inside diamond with shortening of laser pulse duration,” Appl. Phys. Lett. 113, 211102

(2018).

46

P. Boerner, M. Hajri, N. Ackerl, and K. Wegener, “Experimental and theoretical

investigation of ultrashort pulsed laser ablation of diamond,” J. Laser Appl. 31,

022202 (2019).

47

B. Ali, H. Xu, D. Chetty, R. T. Sang, I. V. Litvinyuk, and M. Rybachuk, “Laserinduced graphitization of diamond under 30 fs laser pulse irradiation,” J. Phys.

Chem. Lett. 13, 2679 (2022).

48

S. I. Kudryashov, A. A. Ionin, S. V. Makarov, N. N. Mel’Nik, L. V. Seleznev,

and D. V. Sinitsyn, “Femtosecond laser ablation of carbon: From spallation to

formation of hot critical plasma,” AIP Conf. Proc. 1464, 244 (2012).

49

B. Ali, I. V. Litvinyuk, and M. Rybachuk, “Femtosecond laser micromachining

of diamond: Current research status, applications and challenge,” Carbon 179, 209

(2021).

50

R. Evans, A. D. Badger, F. Falliès, M. Mahdieh, T. A. Hall, P. Audebert, J.-P.

Geindre, J.-C. Gauthier, A. Mysyrowicz, G. Grillon, and A. Antonetti, “Timeand space-resolved optical probing of femtosecond-laser-driven shock waves in

aluminum,” Phys. Rev. Lett. 77, 3359 (1996).

51

M. Tsujino, T. Sano, O. Sakata, N. Ozaki, S. Kimura, S. Takeda, M. Okoshi,

N. Inoue, R. Kodama, K. F. Kobayashi, and A. Hirose, “Synthesis of submicron

metastable phase of silicon using femtosecond laser-driven shock wave,” J. Appl.

Phys. 110, 126103 (2011).

52

S. Augst, D. D. Meyerhofer, D. Strickland, and S. L. Chin, “Laser ionization of noble gases by Coulomb-barrier suppression,” J. Opt. Soc. Am. B 8, 858

(1991).

53

X. M. Tong, Z. X. Zhao, and C. D. Lin, “Theory of molecular tunneling

ionization,” Phys. Rev. A 66, 033402 (2002).

54

P. Sprangle, J. R. Peñano, and B. Hafizi, “Propagation of intense short laser

pulses in the atmosphere,” Phys. Rev. E 66, 046418 (2002).

55

B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, and S. I. Anisimov,

“Timescales in the response of materials to femtosecond laser excitation,” Appl.

Phys. A 79, 767 (2004).

56

N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, “Solidstate electronic spin coherence time approaching one second,” Nat.Commun. 4,

1743 (2013).

8, 036108-9

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る