リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A study of the formation of folding that extend to a 3D morphology in insects」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A study of the formation of folding that extend to a 3D morphology in insects

足立, 晴彦 大阪大学 DOI:10.18910/88166

2022.03.24

概要

Morphogenesis mechanisms are an important issue in the field of developmental biology. In the study of morphogenesis, much research has focused on embryogenesis, which is the process of drastic morphological change from a single cell. On the other hand, morphogenesis after embryonic development is not well understood. Metamorphosis is a characteristic example of drastic morphological changes that occur after embryogenesis. It is important issue to analyze the morphogenesis of metamorphosis in that the size scale is different from embryogenesis. In this study, I focused on the insect especially beetle horn and treehopper, morphogenesis through molting in the post-embryonic development.

Beetle horns are not present in the larvae, but suddenly appear when the beetle molts into a pupa.In a previous study, it was reported that beetle horns exist in a folded state in the head of the final instar larvae just before molting, and that simply physically expanding them would result in the final horn shape. On the other hand, there was no understanding of how the folding formation was controlled. Therefore, in this study, I first analyzed the formation of the horn primordia in the beetle. Analysis of the horn primordia of dachsous (ds) RNAi, which were known to get thicker and shorter horns, revealed that the macro shape of the horn primordia (especially the stalk portion of the mushroom morphology) changed significantly, while the micro furrows remained almost unchanged. Analysis of cell division showed that the anisotropy of cell division was abolished in ds RNAi. This suggests that macroscopic morphology and microscopic wrinkles are independently regulated, and that anisotropy of cell division is involved in macro shape. From the analysis of beetle of different body sizes, it was found that the depth of microscopic wrinkles and surface pattern (direction) did not change with size. Then, I searched for RNAi individuals in which these parameters were changed. As a result, I found that the notch gene and cyclinE gene play important roles in each. In addition, I found that in the control primordia, the frequency of cell division was higher in the areas where concentric folding patterns were expected to form than in other areas. In addition, in notch RNAi, the pattern of cell division was not disrupted, but the overall frequency of division was reduced, as seen in controls. Furthermore, in cyclinE RNAi, the frequency of cell division was reduced compared to controls only in areas where concentric folding patterns were expected to form.

These results indicate that the pattern (direction) and depth of folding of the horn primordia of the beetle are formed by independent mechanisms. It was also suggested that the regulation mechanism could be the control of the overall cell division frequency and the pattern of division frequency.

Next, in order to confirm the hierarchical developmental process observed in beetle horns, which also occurs in the morphogenesis of hemimetabolous insects, helmet structure of the treehoppers, which suddenly appears during molting into an adult, was focused on. Histological analysis using a combination of µCT, SEM, and paraffin sections revealed a continuous process of macro shape and micro furrow formation, suggesting the existence of a universality of morphogenesis process through folding and unfolding.

この論文で使われている画像

参考文献

Aldaz, S., L. M. Escudero & M. Freeman (2010) Live imaging of Drosophila imaginal disc development. Proceedings of the National Academy of Sciences, 107, 14217-14222.

Alwes, F., C. Enjolras & M. Averof (2016) Live imaging reveals the progenitors and cell dynamics of limb regeneration. Elife, 5.

Angelini, D. R., F. W. Smith & E. L. Jockusch (2012) Extent With Modification: Leg Patterning in the Beetle Tribolium castaneum and the Evolution of Serial Homologs. G3-Genes Genomes Genetics, 2, 235-248.

Baena-López, L. A., A. Baonza & A. García-Bellido (2005) The orientation of cell divisions determines the shape of Drosophila organs. Current Biology, 15, 1640-1644.

Baonza, A. & A. Garcia-Bellido (2000) Notch signaling directly controls cell proliferation in the Drosophila wing disc. Proceedings of the National Academy of Sciences of the United States of America, 97, 2609-2614.

Buckton, G. B. & E. B. Poulton. 1903. A Monograph of the Membracidae. L. Reeve & Company, limited.

Callaini, G., M. G. Riparbelli, M. Cintorino, S. a. Tripodi, G. Bianciardi, P. Tosi & R. Dallai (1994) The proliferating cell marker monoclonal antibody Ki-67 recognizes specific antigens associated with the nuclear envelope of the early Drosophila embryo. Biology of the cell / under the auspices of the European Cell Biology Organization, 81, 39-45.

Carroll, J. E. (1989) Growing Button Mushrooms.

Chapman, R. F. 1998. The insects: structure and function. . Cambridge university press.

Cordoba, S. & C. Estella (2018) The transcription factor Dysfusion promotes fold and joint morphogenesis through regulation of Rho1. Plos Genetics, 14.

Crabtree, J. R., A. L. M. Macagno, A. P. Moczek, P. T. Rohner & Y. Hu (2020) Notch signaling patterns head horn shape in the bull-headed dung beetle Onthophagus taurus. Development Genes and Evolution.

Cryan, J. R., B. M. Wiegmann, L. L. Deitz, C. H. Dietrich & M. F. Whiting (2004) Treehopper trees: phylogeny of Membracidae (Hemiptera: Cicadomorpha: Membracoidea) based on molecules and morphology. Systematic Entomology, 29, 441-454.

de Celis, J. F., D. M. Tyler, J. de Celis & S. J. Bray (1998) Notch signalling mediates segmentation of the Drosophila leg. Development, 125, 4617-4626.

Domínguez-Giménez, P., N. H. Brown & M. a. D. Martín-Bermudo (2007) Integrin-ECM interactions regulate the changes in cell shape driving the morphogenesis of the Drosophila wing epithelium. Journal of Cell Science, 120, 1061-1071.

Edgar, B. A. & C. F. Lehner (1996) Developmental control of cell cycle regulators: A fly's perspective. Science, 274, 1646-1652.

Emlen, D. J., L. Corley Lavine & B. Ewen-Campen (2007) On the origin and evolutionary diversification of beetle horns. Proceedings of the National Academy of Sciences, 104, 8661-8668.

Emlen, D. J. & H. F. Nijhout (1999) Hormonal control of male horn length dimorphism in the dung beetle Onthophagus taurus (Coleoptera : Scarabaeidae). Journal of Insect Physiology, 45, 45-53.

Emlen, D. J., I. A. Warren, A. Johns, I. Dworkin & L. C. Lavine (2012) A Mechanism of Extreme Growth and Reliable Signaling in Sexually Selected Ornaments and Weapons. Science, 337, 860-864.

Fisher, C. R., J. L. Wegrzyn & E. L. Jockusch (2020) Co-option of wing-patterning genes underlies the evolution of the treehopper helmet. Nature ecology & evolution, 4, 250- 260.

Fristrom, D. & J. W. Fristrom (1975) The mechanism of evagination of imaginal discs of Drosophila melanogaster: I. General considerations. Developmental biology, 43, 1-23. Godoy-Cabrera, C., X. Miranda-Garnier, K. Nishida & C. Feeny (2006) Membrácidos de la América tropical= Treehoppers of tropical America.(ISBN 9968-927-10-4.).

Gotoh, H., J. A. Hust, T. Miura, T. Niimi, D. J. Emlen & L. C. Lavine (2015) The Fat/Hippo signaling pathway links within-disc morphogen patterning to whole-animal signals during phenotypically plastic growth in insects. Developmental Dynamics, 244, 1039- 1045.

Gullan, P. J. & P. S. Cranston. 2014. The insects: an outline of entomology. John Wiley & Sons. Hadley, N. F. (1982) Cuticle ultrastructure with respect to the lipid waterproofing barrier.Journal of Experimental Zoology, 222, 239-248.

Hales, K. G., C. A. Korey, A. M. Larracuente & D. M. Roberts (2015) Genetics on the fly: a primer on the Drosophila model system. Genetics, 201, 815-842.

Havemann, J., U. Müller, J. Berger, H. Schwarz, M. Gerberding & B. Moussian (2008) Cuticle differentiation in the embryo of the amphipod crustacean Parhyale hawaiensis. Cell and tissue research, 332, 359-370.

Hopkins, T. L. & K. J. Kramer (1992) Insect cuticle sclerotization. Annual review of entomology, 37, 273-302.

Hust, J., M. D. Lavine, A. M. Worthington, R. Zinna, H. Gotoh, T. Niimi & L. Lavine (2018) The Fat-Dachsous signaling pathway regulates growth of horns in Trypoxylus dichotomus, but does not affect horn allometry. J Insect Physiol, 105, 85-94.

Inoue, Y., I. Tateo & T. Adachi (2019) Epithelial tissue folding pattern in confined geometry.Biomechanics and modeling in mechanobiology, 1-8.

Irvine, K. D. & K. F. Harvey (2015) Control of organ growth by patterning and hippo signaling in Drosophila. Cold Spring Harbor perspectives in biology, 7, a019224.

Ito, Y., A. Harigai, M. Nakata, T. Hosoya, K. Araya, Y. Oba, A. Ito, T. Ohde, T. Yaginuma & T. Niimi (2013) The role of doublesex in the evolution of exaggerated horns in the Japanese rhinoceros beetle. EMBO Reports, 14, 561-567.

Johns, A., H. Gotoh, E. L. McCullough, D. J. Emlen & L. C. Lavine (2014) Heightened Condition-Dependent Growth of Sexually Selected Weaponsin the Rhinoceros Beetle, Trypoxylus dichotomus (Coleoptera: Scarabaeidae). Integrative and Comparative Biology, 54, 614-621.

Kenyon, K. L., S. S. Ranade, J. Curtiss, M. Mlodzik & F. Pignoni (2003) Coordinating proliferation and tissue specification to promote regional identity in the Drosophila head. Developmental Cell, 5, 403-414.

Mao, Y., A. L. Tournier, P. A. Bates, J. E. Gale, N. Tapon & B. J. Thompson (2011) Planar polarization of the atypical myosin Dachs orients cell divisions in Drosophila. Genes and Development, 25, 131-136.

Matsuda, K., H. Gotoh, H. Adachi, Y. Inoue & S. Kondo (2021) Computational analyses decipher the primordial folding coding the 3D structure of the beetle horn. Scientific reports, 11, 1-12.

Matsuda, K., H. Gotoh, Y. Tajika, T. Sushida, H. Aonuma, T. Niimi, M. Akiyama, Y. Inoue & S. Kondo (2017) Complex furrows in a 2D epithelial sheet code the 3D structure of a beetle horn. Scientific Reports, 7.

Meyer, E. J., A. Ikmi & M. C. Gibson (2011) Interkinetic nuclear migration is a broadly conserved feature of cell division in pseudostratified epithelia. Current Biology, 21, 485-491.

Mikó, I., F. Friedrich, M. J. Yoder, H. M. Hines, L. L. Deitz, M. A. Bertone, K. C. Seltmann,

M. S. Wallace & A. R. Deans (2012) On dorsal prothoracic appendages in treehoppers (Hemiptera: Membracidae) and the nature of morphological evidence. PLoS ONE, 7.

Morata, G. (2001) How Drosophila appendages develop. Nature reviews Molecular cell biology, 2, 89-97.

Morita, S., T. Ando, A. Maeno, T. Mizutani, M. Mase, S. Shigenobu & T. Niimi (2019) Precise staging of beetle horn formation in Trypoxylus dichotomus reveals the pleiotropic roles of doublesex depending on the spatiotemporal developmental contexts. Plos Genetics, 15.

Ohde, T., S. Morita, S. Shigenobu, J. Morita, T. Mizutani, H. Gotoh, R. A. Zinna, M. Nakata,Y. Ito, K. Wada, Y. Kitano, K. Yuzaki, K. Toga, M. Mase, K. Kadota, J. Rushe, L. C. Lavine, D. J. Emlen & T. Niimi (2018) Rhinoceros beetle horn development reveals deep parallels with dung beetles. Plos Genetics, 14.

Porto, D. S., G. A. Melo & E. A. Almeida (2016) Clearing and dissecting insects for internal skeletal morphological research with particular reference to bees. Revista Brasileira de Entomologia, 60, 109-113.

Prudʼhomme, B., C. Minervino, M. Hocine, J. D. Cande, A. Aouane, H. D. Dufour, V. A. Kassner & N. Gompel (2011) Body plan innovation in treehoppers through the evolution of an extra wing-like appendage. Nature, 473, 83-86.

Raabe, D., P. Romano, C. Sachs, A. Al-Sawalmih, H.-G. Brokmeier, S.-B. Yi, G. Servos & H. Hartwig (2005) Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue. Journal of Crystal Growth, 283, 1-7.

Ray, R. P., P. S. Ganguly, S. Alt, J. R. Davis, A. Hoppe, N. Tapon, G. Salbreux & B. J. Thompson(2018) Apical and basal matrix remodeling control epithelial morphogenesis.Developmental cell, 46, 23-39. e5.

Reddy, B. V. V. G. & K. D. Irvine (2008) The Fat and Warts signaling pathways: new insights into their regulation, mechanism and conservation. Development, 135, 2827-2838.

Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch,C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri,P. Tomancak & A. Cardona (2012) Fiji: an open-source platform for biological-image analysis. Nature Methods, 9, 676-682.

Segalen, M. & Y. Bellaïche. 2009. Cell division orientation and planar cell polarity pathways.In Seminars in cell & developmental biology, 972-977. Elsevier.

Siemanowski, J., T. Richter, V. A. Dao & G. Bucher (2015) Notch signaling induces cell proliferation in the labrum in a regulatory network different from the thoracic legs. Developmental Biology, 408, 164-177.

Snodgrass, R. E. 1935. Principles of insect morphology. Cornell University Press.

Stegmann, U. E. (1998) An exaggerated trait in insects: the prothoracic skeleton of Stictocephala bisonia (Homoptera: Membracidae). Journal of Morphology, 238, 157- 178.

Tajika, Y., T. Murakami, K. Iijima, H. Gotoh, M. Takahashi-Ikezawa, H. Ueno, Y. Yoshimoto & H. Yorifuji (2017) A novel imaging method for correlating 2D light microscopic data and 3D volume data based on block-face imaging. Scientific Reports, 7.

Tomoyasu, Y. & R. E. Denell (2004) Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Development Genes and Evolution, 214, 575-578.

Waddington, C. H. (1940) The genetic control of wing development in Drosophila. Journal of Genetics, 41, 75-113.

Wang, X. F., Y. Shen, Q. Cheng, C. L. Fu, Z. Z. Zhou, S. Hirose & Q. X. Liu (2017) Apontic directly activates hedgehog and cyclin E for proper organ growth and patterning. Scientific Reports, 7.

Warren, I. A., J. C. Vera, A. Johns, R. Zinna, J. H. Marden, D. J. Emlen, I. Dworkin & L. C. Lavine (2014) Insights into the Development and Evolution of Exaggerated Traits Using De Novo Transcriptomes of Two Species of Horned Scarab Beetles. Plos One, 9.

Wood, T. K. (1993) Diversity in the new world Membracidae. Annual review of entomology,38, 409-433.

Woods, D. F. & P. J. Bryant (1993) Apical junctions and cell signalling in epithelia. Journal of Cell Science, 1993, 171-181.

Yoshizawa, K. (2012) The treehopper's helmet is not homologous with wings (Hemiptera: Membracidae). Systematic Entomology, 37, 2-6.

参考文献をもっと見る