リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「脳波、NIRSにおけるマルチスケールエントロピーによる脳の複雑性解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

脳波、NIRSにおけるマルチスケールエントロピーによる脳の複雑性解析

アンスワッタナク, タナート ANGSUWATANAKUL, THANATE 九州大学

2020.03.23

概要

Memory is not a static but a dynamic cognitive process of the brain that is reorganized, retrieved, and recalled through experience. The remembering self is shaped by our own experience, known knowledge and bias through the dynamic process of remembering some pieces of information and forgetting others. At that point, this memorizing mechanism forms the neuronal integrity, which we can recall once we look back. The analyses of the neuroimaging data provide evidence that individuals have the ability to self-control what they decide to remember or forget, all of which are shown in the neural structures in recognition memory. This study aims to determine the potential use of simultaneous EEG and fNIRS for recording brain activity as well as to apply multi-scale entropy (MSE) in analyzing brain activity for entropy levels or brain complexity levels. There are fifteen healthy participants, self-reported normal colour vision, participated in this study. For each stimulus, all participants were asked to make one out of two-choice manual responses, either intentionally to remember or to forget, after exposed to visual stimulus on the screen; 250 indoor/outdoor scenes were randomly shown surrounding fixation with black-colour background with responses time-locked to the stimuli. After that, the participants subsequently had a scene recognition test. The results of Wilcoxon signed rank test revealed that participants intentionally memorising a visual scene demonstrate significantly greater brain complexity levels in the prefrontal and frontal lobe than when purposefully forgetting a scene; p < 0.05 (two-tailed). According to Pearson Correlation analysis, there is no relationship between EEG and NIRS, whereas Hb.O2 and Hb.R were positively correlated (p < 0.05) meaning that these two methods can be used for brain signal recording without interfering with one another and therefore simultaneous EEG and fNIRS is considered suitable for brain measurement.

In conclusion, a combination of all considerations suggests that, in MSE domain, the use of simultaneous EEG and fNIRS can provide more preferable insights of neuronal activity in comparison to using only EEG or fNIRS separately.

この論文で使われている画像

参考文献

Abásolo, D., Hornero, R., Espino, P., Alvarez, D., & Poza, J. (2006). Entropy analysis of the EEG background activity in Alzheimer’s disease patients. Physiological Measurement, 27(3), 241-253.

Aboy, M., Cuesta-Frau, D., Austin, D., & Mico-Tormos, P. (2007) Characterization of sample entropy in the context of biomedical signal analysis. Paper presented at the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, 22-26 August 2007, 5942-5945.

Aghajani, H., Garbey, M., & Omurtag, A. (2017). Measuring mental workload with EEG+fNIRS. Frontiers in Human Neuroscience, 11(359), 1-20. doi: 10.3389/fnhum.2017.00359

Al-Angari, H.M., & Sahakian, A.V. (2007) Use of sample entropy approach to study heart rate variability in obstructive sleep apnea syndrome. IEEE Transactions on Biomedical Engineering, 54(10), 1900-1904.

Alloway, T. P., Gathercole, S. E., & Pickering, S. J. (2006). Verbal and visuospatial short‐term and working memory in children: Are they separable?. Child development, 77(6), 1698-1716.

Al-shargie, F. M., Tang, T. B., Badruddin, N., & Kiguchi, M. (2015, December). Mental stress quantification using EEG signals. In 2015 International Conference for Innovation in Biomedical Engineering and Life Sciences (pp. 15-19). Springer, Singapore.

Al-shargie, F., Tang, T. B., Badruddin, N., & Kiguchi, M. (2015, October). Simultaneous measurement of EEG-fNIRS in classifying and localizing brain activation to mental stress. In 2015 IEEE International Conference on Signal and Image Processing Applications (ICSIPA) (pp. 282-286). IEEE.

Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106-111.

Ang, K. K., Yu, J., & Guan, C. (2014, August). Single-trial classification of NIRS data from prefrontal cortex during working memory tasks. Paper presented at the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL. doi: 10.1109/EMBC.2014.6944009

Araki, A., Ikegami, M., Okayama, A., Matsumoto, N., Takahashi, S., Azuma, H., & Takahashi, M. (2015). Improved prefrontal activity in AD/HD children treated with atomoxetine: A NIRS study. Brain and Development, 37(1), 76-87. doi: 10.1016/j.braindev.2014.03.011

Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559.

Bashiri, M., Mumtaz, W., Malik, A. S., & Waqar, K. (2015, November). EEG-based brain connectivity analysis of working memory and attention. Paper presented at the IEEE Student Symposium in Biomedical Engineering & Sciences (ISSBES), Shah Alam, SGR.

Bassett, D. S., & Gazzaniga, M. S. (2011). Understanding complexity in the human brain. Trends in cognitive sciences, 15(5), 200-209.

Basso Moro, S., Cutini, S., Ursini, M. L., Ferrari, M., & Quaresima, V. (2013). Prefrontal cortex activation during story encoding/retrieval: a multi-channel functional near-infrared spectroscopy study. Frontiers in human neuroscience, 7(1), 925.

Bauer, P. J. (2015). Short-and Long-term Memory during Infancy and Early Childhood across Cultures. International Encyclopedia of the Social & Behavioral Sciences (Second Edition), (pp. 896-900) USA: Elsevier. doi:10.1016/B978- 0-08-097086-8.23064-X

Blasiman, R. N., & Was, C. A. (2018). Why is working memory performance unstable? A review of 21 factors. Europe's journal of psychology, 14(1), 188.

Blokland, Y., Spyrou, L., Lerou, J., Mourisse, J., Scheffer, G. J., van Geffen, G. J., ... & Bruhn, J. (2015). Detection of attempted movement from the EEG during neuromuscular block: proof of principle study in awake volunteers. Scientific reports, 5(1), 12815.

Blokland, Y., Spyrou, L., Thijssen, D., Eijsvogels, T., Colier, W., Floor-Westerdijk, M., ... & Farquhar, J. (2013). Combined EEG-fNIRS decoding of motor attempt and imagery for brain switch control: an offline study in patients with tetraplegia. IEEE transactions on neural systems and rehabilitation engineering, 22(2), 222-229.

Borowska, M. (2015). Entropy-based algorithms in the analysis of biomedical signals. Studies in Logic, Grammar and Rhetoric, 43(1), 21-32.

Bortfeld, H., Wruck, E., & Boas, D. A. (2007). Assessing infants’ cortical response to speech using near-infrared spectroscopy. NeuroImage, 34(1), 407-415. doi: 10.1016/j.neuroimage.2006.08.010

Bozkurt, A., Rosen, A., Rosen, H., & Onaral, B. (2005). A portable near infrared spectroscopy system for bedside monitoring of newborn brain. BioMedical Engineering OnLine, 4(29), 1-11. doi: 10.1186/1475-925X-4-29

Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5(1), 49-62. doi: 10.1006/nimg.1996.0247

Brooksby, B., Jiang, S., Dehghani, H., Pogue, B. W., Paulsen, K. D., Weaver, J., ... Poplack, S. P. (2005). Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: Implementation of a Laplacian-type regularization to incorporate magnetic resonance structure. Journal of Biomedical Optics, 10(5), 1-10. doi: 10.1117/1.2098627

Bruce, E. N., Bruce, M. C., & Vennelaganti, S. (2009). Sample entropy tracks changes in EEG power spectrum with sleep state and aging. Journal of clinical neurophysiology: official publication of the American Electroencephalographic Society, (4), 257.

Brunner, C., Delorme, A., & Makeig, S. (2013). Eeglab–An open source matlab toolbox for electrophysiological research. Biomedical Engineering/Biomedizinische Technik, 58(1), 1-2. doi:10.1515/bmt-2013-4182.

Bunce, S. C., Izzetoglu, M., Izzetoglu, K., Onaral, B., & Pourrezaei, K. (2006). Functional near-infrared spectroscopy. IEEE engineering in medicine and biology magazine, 25(4), 54-62.

Buxton, R. B., Wong, E. C., & Frank, L. R. (1998). Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magnetic resonance in medicine, 39(6), 855-864.

Byun, S., Kim, A. Y., Jang, E. H., Kim, S., Choi, K. W., Yu, H. Y., & Jeon, H. J. (2019). Entropy analysis of heart rate variability and its application to recognize major depressive disorder: A pilot study. Technology and Health Care, (Preprint), 1-18.

Carruthers, P. (2013). Evolution of working memory. Proceedings of the National Academy of Sciences, 110(Supplement 2), 10371-10378.

Catarino, A., Churches, O., Baron-Cohen, S., Andrade, A., & Ring, H. (2011). Atypical EEG complexity in autism spectrum conditions: a multiscale entropy analysis. Clinical neurophysiology, 122(12), 2375-2383.

Chen, J. E., & Glover, G. H. (2015). Functional magnetic resonance imaging methods. Neuropsychology review, 25(3), 289-313.

Clapp, W. C., Rubens, M. T., & Gazzaley, A. (2009). Mechanisms of working memory disruption by external interference. Cerebral Cortex, 20(4), 859-872.

Coffey, E. B. J., Brouwer, A., & Van Erp, J. B. F. (2012). Measuring workload using a combination of electroencephalography and near infrared spectroscopy. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 56, 1822-1826. doi: 10.1177/1071181312561367

Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., & Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386(6625), 604-608. doi: 10.1038/386604a0

Collins, G. P. (2002). Claude E. Shannon: Founder of Information Theory. Scientific American. < http://cispom.boisestate.edu/murli/links/ShannonSciAm. htm.

Cope, M. (1991). The development of a near infrared spectroscopy system and its application for noninvasive monitoring of cerebral blood and tissue oxygenation in the newborn infants (Doctoral dissertation, University of London).

Costa, M., Goldberger, A. L., & Peng, C. K. (2005). Multiscale entropy analysis of biological signals. Physical Review E, 71(2), 1-18. doi: 10.1103/PhysRevE.71.021906

Cowan, N. (2008). What are the differences between long-term, short-term, and working memory? Progress in brain research, 169(1), 323-338.

Crosson, B., Ford, A., McGregor, K. M., Meinzer, M., Cheshkov, S., Li, X., ... & Briggs, R. W. (2010). Functional imaging and related techniques: an introduction for rehabilitation researchers. Journal of rehabilitation research and development, 47(2), 5-34.

Delgado-Bonal, A., & Marshak, A. (2019). Approximate entropy and sample entropy: A comprehensive tutorial. Entropy, 21(6), 541.

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. doi: 10.1016/j.jneumeth.2003.10.009

Diamantopoulou, S., Poom, L., Klaver, P., & Talsma, D. (2011). Visual working memory capacity and stimulus categories: a behavioral and electrophysiological investigation. Experimental Brain Research, 209(4), 501-513. doi: 10.1007/s00221-011-2536-z

Duann, J. R., Ide, J. S., Luo, X., & Li, C. S. R. (2009). Functional connectivity delineates distinct roles of the inferior frontal cortex and presupplementary motor area in stop signal inhibition. Journal of Neuroscience, 29(32), 10171- 10179.

Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11(1), 19-23. doi: 10.1111/1467- 8721.00160

Fazli, S., Mehnert, J., Steinbrink, J., Curio, G., Villringer, A., Müller, K. R., & Blankertz, B. (2012). Enhanced performance by a hybrid NIRS–EEG brain computer interface. Neuroimage, 59(1), 519-529.

Ferrari, M., & Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage, 63(2), 921-935. doi: 10.1016/j.neuroimage.2012.03.049

Flores Camacho, F., Ulloa Lugo, N., & Covarrubias Martínez, H. (2015). The concept of entropy, from its origins to teachers. Revista mexicana de física E, 61(2), 69-80.

Fry, A. F., & Hale, S. (1996). Processing speed, working memory, and fluid intelligence: Evidence for a developmental cascade. Psychological Science, 7(4), 237-241. doi: 10.1111/j.1467-9280.1996.tb00366.x

Gathercole, S. E., & Alloway, T. P. (2007). Understanding working memory: A classroom guide. Lontoo: Harcourt Assessment.

Gevins, A., Smith, M. E., McEvoy, L., & Yu, D. (1997). High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cerebral Cortex, 7(4), 374-385. doi: 10.1093/cercor/7.4.374

Haeussinger, F. B., Heinzel, S., Hahn, T., Schecklmann, M., Ehlis, A. C., & Fallgatter, A. J. (2011). Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging. PloS one, 6(10), e26377.

Herold, F., Wiegel, P., Scholkmann, F., & Mueller, N. G. (2018). Applications of functional near-infrared spectroscopy (fNIRS) neuroimaging in Exercise– Cognition science: a systematic, Methodology-Focused review. Journal of clinical medicine, 7(12), 466.

Hirshfield, L. M., Chauncey, K., Gulotta, R., Girouard, A., Solovey, E. T., Jacob, R. J., ... Fantini, S. (2009). Combining electroencephalograph and functional near infrared spectroscopy to explore users’ mental workload. In D. D. Schmorrow, I. V. Estabrooke, & M. Grootjen (Eds.), Foundations of Augmented Cognition: Neurogonomics and Operational Neuroscience (pp. 239-247). Berlin, Germany: Springer-Verlag. doi: 10.1007/978-3-642- 02812-0_28

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.

Hong, K. S., Khan, M. J., & Hong, M. J. (2018). Feature extraction and classification methods for hybrid fNIRS-EEG brain-computer interfaces. Frontiers in Human Neuroscience, 12(246), 1-25. doi: 10.3389/fnhum.2018.00246

Hornero, R., Abásolo, D., Escudero, J., & Gómez, C. (2008). Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer's disease. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1887), 317-336.

Hu, X., Miller, C., Vespa, P., & Bergsneider, M. (2008). Adaptive computation of approximate entropy and its application in integrative analysis of irregularity of heart rate variability and intracranial pressure signals. Medical engineering & physics, 30(5), 631-639.

Huppert, T. J., Diamond, S. G., Franceschini, M. A., & Boas, D. A. (2009). HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Applied Optics, 48(10), D280-D298. doi: 10.1364/AO.48.00D280

Khalaj, F., Pasha, E., Tavakkoli-Moghaddam, R., & Khalaj, M. (2018). Interval- Valued Uncertainty Based on Entropy and Dempster–Shafer Theory. Journal of Statistical Theory and Applications, 17(4), 627-635.

Khan, M. J., Hong, M. J., & Hong, K. S. (2014). Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface. Frontiers in human neuroscience, 8(1), 244.

Kim, H. Y., Seo, K., Jeon, H. J., Lee, U., & Lee, H. (2017). Application of functional near-infrared spectroscopy to the study of brain function in humans and animal models. Molecules and cells, 40(8), 523.

Korhonen, V., Hiltunen, T., Myllylä, T., Wang, X., Kantola, J., Nikkinen, J., ... & Kiviniemi, V. (2014). Synchronous multiscale neuroimaging environment for critically sampled physiological analysis of brain function: hepta-scan concept. Brain connectivity, 4(9), 677-689.

Kumar, P. S., Arumuganathan, R., Sivakumar, K., & Vimal, C. (2008). Removal of ocular artifacts in the EEG through wavelet transform without using an EOG reference channel. Int. J. Open Problems Compt. Math, 1(3), 188-200.

Lambek, R., & Shevlin, M. (2011). Working memory and response inhibition in children and adolescents: Age and organization issues. Scandinavian Journal of Psychology, 52(5), 427-432.

Leon, A. C. (1998). Descriptive and inferential statistics. In Comprehensive Clinical Psychology; Bellack, A.S., Hersen, M., Eds.; Pergamon: Oxford, UK, 243– 285.

Lin, P. Y., Lin, S. I., Penney, T., & Chen, J. J. (2009). Applications of near infrared spectroscopy and imaging for motor rehabilitation in stroke patients. J Med Biol Eng, 29(5), 210-221.

Lin, Y. P., Wang, C. H., Jung, T. P., Wu, T. L., Jeng, S. K., Duann, J. R., & Chen, J. H. (2010). EEG-based emotion recognition in music listening. IEEE Transactions on Biomedical Engineering, 57(7), 1798-1806. doi: 10.1109/TBME.2010.2048568

Lindenberger, U., & Baltes, P. B. (1994). Sensory functioning and intelligence in old age: A strong connection. Psychology and Aging, 9(3), 339-355. doi: 10.1037/0882-7974.9.3.339

Liu, X., Jiang, A., Xu, N., & Xue, J. (2016). Increment entropy as a measure of complexity for time series. Entropy, 18(1), 22.

Liu, Y., Piazza, E. A., Simony, E., Shewokis, P. A., Onaral, B., Hasson, U., & Ayaz, H. (2017). Measuring speaker–listener neural coupling with functional near infrared spectroscopy. Scientific Reports, 7(43293), 1-13. doi: 10.1038/srep43293

Lystad, R. P., & Pollard, H. (2009). Functional neuroimaging: a brief overview and feasibility for use in chiropractic research. The Journal of the Canadian Chiropractic Association, 53(1), 59.

Ma, L., Steinberg, J. L., Hasan, K. M., Narayana, P. A., Kramer, L. A., & Moeller, F. G. (2012). Working memory load modulation of parieto‐frontal connections: Evidence from dynamic causal modeling. Human Brain Mapping, 33(8), 1850-1867. doi: 10.1002/hbm.21329

Maturana-Candelas, A., Gómez, C., Poza, J., Pinto, N., & Hornero, R. (2019). EEG characterization of the Alzheimer’s disease continuum by means of Multiscale Entropies. Entropy, 21(6), 544.

Mehta, R. K., & Parasuraman, R. (2013). Neuroergonomics: a review of applications to physical and cognitive work. Frontiers in human neuroscience, 7, 889.

Mirelman, A., Maidan, I., Bernad-Elazari, H., Nieuwhof, F., Reelick, M., Giladi, N., & Hausdorff, J. M. (2014). Increased frontal brain activation during walking while dual tasking: an fNIRS study in healthy young adults. Journal of Neuroengineering and Rehabilitation, 11(85), 1-7. doi: 10.1186/1743-0003- 11-85

Molteni, E., Contini, D., Caffini, M., Baselli, G., Spinelli, L., Cubeddu, R., … Torriceli, A. (2012). Load-dependent brain activation assessed by time- domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty. Journal of Biomedical Optics, 17(5), 1-12. doi: 10.1117/1.JBO.17.5.056005

Morabito, F. C., Labate, D., La Foresta, F., Bramanti, A., Morabito, G., & Palamara, I. (2012). Multivariate multi-scale permutation entropy for complexity analysis of Alzheimer’s disease EEG. Entropy, 14(7), 1186-1202. doi: 10.3390/e14071186

Moran, R. J., Campo, P., Maestu, F., Reilly, R. B., Dolan, R. J., & Strange, B. A. (2010). Peak frequency in the theta and alpha bands correlates with human working memory capacity. Frontiers in Human Neuroscience, 4(200), 1-12. doi: 10.3389/fnhum.2010.00200

Morris, N., & Jones, D. M. (1990). Memory updating in working memory: The role of the central executive. British Journal of Psychology, 81(2), 111-121. doi: 10.1111/j.2044-8295.1990.tb02349.x

N. A. Trans Cranial Technologies, Cortical Functions Reference, Wan Chai, Hong Kong: Trans Cranial Technologies ldt., 2012.

Nadel, L., & Hardt, O. (2011). Update on memory systems and processes. Neuropsychopharmacology, 36(1), 251.

Nagel B. J., Ohannessian A., & Cummins K. (2007). Performance dissociation during verbal and spatial working memory tasks. Perceptual and Motor Skills, 105(1), 243–250. doi:. 10.2466/pms.105.1.243-250

Norcia, A. M., Appelbaum, L. G., Ales, J. M., Cottereau, B. R., & Rossion, B. (2015). The steady-state visual evoked potential in vision research: a review. Journal of vision, 15(6), 4-4.

Peng, S., Chen, B., Sun, L., Ser, W., & Lin, Z. (2017). Constrained maximum correntropy adaptive filtering. Signal Processing, 140, 116-126.

Pincus, S. M. (1991, April). Approximate entropy: A complexity measure for biological time series data. Paper presented at the IEEE Seventeenth Annual Northeast Bioengineering Conference, Hartford, CT. doi: 10.1109/NEBC.1991.154568

Pincus, S. M., Mulligan, T., Iranmanesh, A., Gheorghiu, S., Godschalk, M., & Veldhuis, J. D. (1996). Older males secrete luteinizing hormone and testosterone more irregularly, and jointly more asynchronously, than younger males. Proceedings of the National Academy of Sciences, 93(24), 14100- 14105.

Putze, F., Hesslinger, S., Tse, C. Y., Huang, Y., Herff, C., Guan, C., & Schultz, T. (2014). Hybrid fNIRS-EEG based classification of auditory and visual perception processes. Frontiers in Neuroscience, 8(373), 1-13. doi: 10.3389/fnins.2014.00373

Quaresima, V., Bisconti, S., & Ferrari, M. (2012). A brief review on the use of functional near-infrared spectroscopy (fNIRS) for language imaging studies in human newborns and adults. Brain and Language, 121(2), 79-89. doi: 10.1016/j.bandl.2011.03.009

Raffalt, P. C., Denton, W., & Yentes, J. M. (2018). On the choice of multiscale entropy algorithm for quantification of complexity in gait data. Computers in biology and medicine, 103(1), 93-100.

Ranger, M., Johnston, C. C., Limperopoulos, C., Rennick, J. E., & du Plessis, A. J. (2011). Cerebral Near-Infrared Spectroscopy as a Measure of Nociceptive Evoked Activity in Critically III Infants. Pain Research and Management, 16(5), 331-336.

Redick T. S., Broadway J. M., Meier M. E., Kuriakose P. S., Unsworth N., Kane M. J., & Engle R. W. (2012). Measuring working memory capacity with automated complex span tasks. European Journal of Psychological Assessment, 28(1), 164–171. doi:.10.1027/1015-5759/a000123

Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology Heart and Circulatory Physiology, 278(6), H2039-H2049. doi: 10.1152/ajpheart.2000.278.6.H2039

Robert M., & Savoie N. (2006). Are there gender differences in verbal and visuospatial working-memory resources? European Journal of Cognitive Psychology, 18(1), 378–397. doi:. 10.1080/09541440500234104

Sai, L., Zhou, X., Ding, X. P., Fu, G., & Sang, B. (2014). Detecting concealed information using functional near-infrared spectroscopy. Brain topography, 27(5), 652-662.

Sarigiannidis, I., Crickmore, G., & Astle, D. E. (2016). Developmental and individual differences in the precision of visuospatial memory. Cognitive Development, 39 (1), 1-12.

Sasabe, T., & Hagiwara, H. (2018, October). Using NIRS to detect brain oxyHb changes during short-term memory tasks. Paper presented at the IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE), Taichung, TG. doi: 10.1109/BIBE.2018.00067

Scheeringa, R., Petersson, K. M., Oostenveld, R., Norris, D. G., Hagoort, P., & Bastiaansen, M. C. M. (2009). Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. NeuroImage, 44(3), 1224-1238. doi: 10.1016/j.neuroimage.2008.08.041

Schreppel, T., Egetemeir, J., Schecklmann, M., Plichta, M. M., Pauli, P., Ellgring, H.,... & Herrmann, M. J. (2008). Activation of the prefrontal cortex in working memory and interference resolution processes assessed with near-infrared spectroscopy. Neuropsychobiology, 57(4), 188-193. doi: 10.1159/000147473

Schroeter, M. L., Zysset, S., Wahl, M., & Von Cramon, D. Y. (2004). Prefrontal activation due to Stroop interference increases during development−An event-related fNIRS study. NeuroImage, 23(4), 1317-1325. doi: 10.1016/j.neuroimage.2004.08.001

Sharanreddy, P., & Kulkarni, P. K. (2013). EEG signal classification for epilepsy seizure detection using improved approximate entropy. Int J Public Health Sci, 2(1), 23-32.

Shiffrin, R. M., & Atkinson, R. C. (1969). Storage and retrieval processes in long-term memory. Psychological Review, 76(2), 179.

Shin, J., Von Lühmann, A., Kim, D. W., Mehnert, J., Hwang, H. J., & Müller, K. R. (2018). Simultaneous acquisition of EEG and NIRS during cognitive tasks for an open access dataset. Scientific data, 5(1), 180003.

Sohrab, S. H. (2014). Boltzmann entropy of thermodynamics versus Shannon entropy of information theory. Int. J. Mech, 8(1), 73-84.

Stergiou, N. (2016). Nonlinear analysis for human movement variability. CRC Press.

Sun, Y., Ayaz, H., & Akansu, A. N. (2015, December). Neural correlates of affective context in facial expression analysis: A simultaneous EEG-fNIRS study. Paper presented at the IEEE Global Conference on Signal and Information Processing (GlobalSIP), Orlando, FL. doi: 10.1109/GlobalSIP.2015.7418311

Sweeny, T. D., Wurnitsch, N., Gopnik, A., & Whitney, D. (2015). Ensemble perception of size in 4–5‐year‐old children. Developmental Science, 18(4), 556-568.

Teng, C., Cheng, Y., Wang, C., Ren, Y., Xu, W., & Xu, J. (2018). Aging-related changes of EEG synchronization during a visual working memory task. Cognitive Neurodynamics, 12(6), 561-568. doi: 10.1007/s11571-018- 9500-6

Tsunashima, H., Yanagisawa, K., & Iwadate, M. (2012). Measurement of Brain Function Using Near-Infrared Spectroscopy (NIRS). INTECH Open Access Publisher.

Ullah, K., Ali, M., Rizwan, M., & Imran, M. (2011, December). Low-cost single- channel EEG based communication system for people with lock-in syndrome. Paper presented at the IEEE 14th International Multitopic Conference, Karachi, SD. doi: 10.1109/INMIC.2011.6151455

Ungerleider, L. G., Courtney, S. M., & Haxby, J. V. (1998). A neural system for human visual working memory. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 883-890. doi: 10.1073/pnas.95.3.883

Vigário, R., Sarela, J., Jousmiki, V., Hamalainen, M., & Oja, E. (2000). Independent component approach to the analysis of EEG and MEG recordings. IEEE transactions on biomedical engineering, 47(5), 589-593.

Wang, W., Zhao, J., Qu, H., & Chen, B. (2017). A correntropy inspired variable step- size sign algorithm against impulsive noises. Signal Processing, 141(1), 168- 175.

Wu, S. D., Wu, C. W., Lin, S. G., Wang, C. C., & Lee, K. Y. (2013). Time series analysis using composite multiscale entropy. Entropy, 15(3), 1069-1084. doi: 10.3390/e15031069

Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., & Torralba, A. (2010, June). Sun database: Large-scale scene recognition from abbey to zoo. Paper presented at the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA. doi: 10.1109/CVPR.2010.5539970

Xue, G., Chen, C., Lu, Z. L., & Dong, Q. (2010). Brain Imaging Techniques and Their Applications in Decision-Making Research. Xin li xue bao. Acta psychologica Sinica, 42(1), 120-137.

Yan, J. J., Wang, Y. Q., Guo, R., Zhou, J. Z., Yan, H. X., Xia, C. M., & Shen, Y. (2012). Nonlinear analysis of auscultation signals in TCM using the combination of wavelet packet transform and sample entropy. Evidence- Based Complementary and Alternative Medicine, 2012.

Ye, J. C., Tak, S., Jang, K. E., Jung, J., & Jang, J. (2009). NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy. NeuroImage, 44(2), 428-447. doi: 10.1016/j.neuroimage.2008.08.036

Yentes, J. M., Hunt, N., Schmid, K. K., Kaipust, J. P., McGrath, D., & Stergiou, N. (2013). The appropriate use of approximate entropy and sample entropy with short data sets. Annals of Biomedical Engineering, 41(2), 349-365. doi: 10.1007/s10439-012-0668-3

Yoo, D. H., & Chung, M. J. (2005). A novel non-intrusive eye gaze estimation using cross-ratio under large head motion. Computer Vision and Image Understanding, 98(1), 25-51. doi: 10.1016/j.cviu.2004.07.011

Yücel, M. A., Selb, J. J., Huppert, T. J., Franceschini, M. A., & Boas, D. A. (2017). Functional near infrared spectroscopy: Enabling routine functional brain imaging. Current opinion in biomedical engineering, 4(1), 78-86.

Zama, T., Takahashi, Y., & Shimada, S. (2019). Simultaneous EEG-NIRS Measurement of the Inferior Parietal Lobule During a Reaching Task With Delayed Visual Feedback. Frontiers in human neuroscience, 13(1), 301.

Zhang, D., Zhao, H., Bai, W., & Tian, X. (2016). Functional connectivity among multi- channel EEGs when working memory load reaches the capacity. Brain Research, 1631(15), 101-112. doi: 10.1016/j.brainres.2015.11.036

Zhang, F., Cai, Z., Skums, P., & Zhang, S. (Eds.). (2018). Bioinformatics Research and Applications: 14th International Symposium, ISBRA 2018, Beijing, China, June 8-11, 2018, Proceedings (Vol. 10847). Springer.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る