リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of miniaturized pick-up amplification circuit for plasma particle detectors on board satellites」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of miniaturized pick-up amplification circuit for plasma particle detectors on board satellites

Kikukawa, Motoyuki Asamura, Kazushi Zushi, Takahiro Kurita, Satoshi Kojima, Hirotsugu 京都大学 DOI:10.1186/s40623-022-01746-8

2022.12.23

概要

Plasma particles and waves are important observation targets in space plasmas for understanding the mechanisms of energy and momentum transfer between waves and particles because space plasmas are essentially collisionless. Multi-point observations are crucial for understanding the spatial–temporal variations of space plasmas. To realize such observations by a large number of satellites, onboard instruments should be miniaturized to reduce their required resources. This paper proposes a small amplifier for plasma particle detectors onboard satellites. This charge-sensitive amplifier converts an electron cloud emitted from the detector, for example a microchannel plate, to a current pulse that can be handled by a time-of-flight measurement circuit to determine the particle velocity and thus mass. The amplifier is realized using application-specific integrated circuit technology to minimize size. Its dimensions are estimated to be $$2120, mathrm{ mu m }times 1680, mathrm{ mu m}$$, which are much smaller than those of a conventional amplifier. The response time of the proposed amplifier has a variation of less than $$1.2, mathrm{ ns}$$ over the range of expected input levels. The amplifier can handle up to $$2times {10}^{7}$$ signals per second and has a sensitivity of $$1.5, mathrm{ V}/mathrm{pC}$$ at $$20, mathrm{^circ{rm C} }$$.

この論文で使われている画像

参考文献

Angelopoulos V et al (2008) First results from the THEMIS mission. Space Sci Rev 141(1):453–476. https://doi.org/10.1007/s11214-008-9378-4

Asamura K et al (2003) Auroral particle instrument onboard the INDEX satellite.

Adv Space Res 32(3):375–378. https://doi.org/10.1016/S0273-1177(03) 90275-4

Asamura K et al (2018) Low-energy particle experiments–ion mass analyzer (LEPi) onboard the ERG (Arase) satellite. Earth Planets Space 70(1):1–15. https://doi.org/10.1186/s40623-018-0846-0

Asamura K et al (2021) Cross-energy couplings from magnetosonic waves to electromagnetic ion cyclotron waves through cold ion heating inside the plasmasphere. Phys Rev Lett 127(24):245101. https://doi.org/10.1103/PhysRevLett.127.245101

Burch JL et al (2016) Magnetospheric multiscale overview and science objectives. Space Sci Rev 199(1):5–21. https://doi.org/10.1007/ s11214-015-0164-9

Carlson, C.W. and McFadden, J.P. (1998). Design and application of imaging plasma instruments. In: Measurement techniques in space plasmas: particles (eds R.F. Pfaf, J. Borovsky and D.T. Young) DOI:https://doi.org/10.1029/GM102p0125

Carlson CW et al (2001) The electron and ion plasma experiment for FAST. The FAST mission. Springer, Dordrecht, pp 33–66

Escoubet CP, Fehringer M, Goldstein M (2001) Introduction the cluster mission. Ann Geophys 19(1012):1197–1200

Gloeckler G et al (1985) First composition measurement of the bulk of the storm-time ring current (1 to 300 keV/e) with AMPTE-CCE. Geophys Res Lett 12(5):325–328. https://doi.org/10.1029/GL012i005p00325

Katoh Y et al (2013) Signifcance of wave-particle interaction analyzer for direct measurements of nonlinear wave-particle interactions. Ann Geophys. https://doi.org/10.5194/angeo-31-503-2013

Keika K et al (2022) Preferential energization of lower-charge-state heavier ions in the near-earth magnetotail. J Geophys Res Space Phys 127(1):e2021JA029786. https://doi.org/10.1029/2021JA029786

Kitamura N et al (2018) Direct measurements of two-way wave-particle energy transfer in a collisionless space plasma. Science 361(6406):1000–1003. https://doi.org/10.1126/science.aap8730

Maggiolo R, Kistler LM (2014) Spatial variation in the plasma sheet composition: dependence on geomagnetic and solar activity. J Geophys Res Space Phys 119(4):2836–2857. https://doi.org/10.1002/2013JA019517

Miyoshi Y et al (2018) Geospace exploration project ERG. Earth Planets Space 70(1):1–13. https://doi.org/10.1186/s40623-018-0862-0

Ozaki M et al (2016) Development of an ASIC preamplifer for electromagnetic sensor probes for monitoring space electromagnetic environments. Earth

Planets Space 68(1):1–13. https://doi.org/10.1186/s40623-016-0470-9

Pollock C et al (2016) Fast plasma investigation for magnetospheric multiscale. Space Sci Rev 199(1):331–406. https://doi.org/10.1007/ s11214-016-0245-4

Rauch JL, Roux A (1982) Ray tracing of ULF waves in a multicomponent magnetospheric plasma: consequences for the generation mechanism of ion cyclotron waves. J Geophys Res Space Phys 87(A10):8191–8198. https:// doi.org/10.1029/JA087iA10p08191

Saito Y et al (2017) High-speed MCP anodes for high time resolution lowenergy charged particle spectrometers. J Geophys Res Space Phys 122(2):1816–1830. https://doi.org/10.1002/2016JA023157

Shelley EG, Johnson RG, Sharp RD (1972) Satellite observations of energetic heavy ions during a geomagnetic storm. J Geophys Res 77(31):6104– 6110. https://doi.org/10.1029/JA077i031p06104

Shoji M et al (2021) Discovery of proton hill in the phase space during interactions between ions and electromagnetic ion cyclotron waves. Sci Rep 11(1):1–8. https://doi.org/10.1038/s41598-021-92541-0

Summers D, Thorne RM (2003) Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J Geophys Res Space Phys. https://doi.org/10.1029/2002JA009489

Tooley CR et al (2016) The magnetospheric multiscale constellation. Space Sci Rev 199(1):23–76. https://doi.org/10.1007/s11214-015-0220-5

Williams DJ (1981) Ring current composition and sources: an update. Planet Space Sci 29(11):1195–1203. https://doi.org/10.1016/0032-0633(81) 90124-0

Wüest M (1998) Time-of-fight ion composition measurement technique for space plasmas. In: Pfaf RF, Borovsky J, Young DT, Eds. Measurement techniques in space plasmas: particles. https://doi.org/10.1029/GM102p0141

Wurz P (2000) Detection of energetic neutral particles. In: Scherer K, Fichtner H, Marsch E (eds) The outer heliosphere: beyond the planets. Copernicus Gesellschaft e.V, Katlenburg-Lindau, pp 251–288

Young DT, Balsiger H, Geiss J (1982) Correlations of magnetospheric ion composition with geomagnetic and solar activity. J Geophys Res Space Phys 87(A11):9077–9096. https://doi.org/10.1029/JA087iA11p09077

Zushi T et al (2019) Development of a miniaturized spectrum-type plasma wave receiver comprising an application-specifc integrated circuit analog front end and a feld-programmable gate array. Meas Sci Technol 30(5):055901. https://doi.org/10.1088/1361-6501/ab0821

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る