リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Nanoscopic lignin mapping on cellulose nanofibers via scanning transmission electron microscopy and atomic force microscopy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Nanoscopic lignin mapping on cellulose nanofibers via scanning transmission electron microscopy and atomic force microscopy

Morita, Kenta Takenaka, Musashi Tomita, Kohei Ishii, Jun Kawaguchi, Hideo Murakami, Daisuke Amo, Hikaru Fujii, Miku Maruyama, Tatsuo Matsumoto, Takuya Nishino, Takashi Ogino, Chiaki 神戸大学

2023.12

概要

Cellulose has been developed as an alternative to petrochemical materials. By comparison with refined nanofibers (RCNFs), lignocellulose nanofibers (LCNFs) show particular promise because it is produced from biomass using only mild pretreatment. The mechanical properties of LCNFs depend on the contained lignin. However, the microscopic location of the lignin contained in LCNFs has not been determined. Thus, we developed two methods to detect and visualize lignin. One uses a scanning transmission electron microscope (STEM) equipped with an energy dispersive X-ray spectroscopy detector. The other method uses an atomic force microscope (AFM) equipped with a cantilever coated with an aromatic molecule. Both methods revealed that the lignin in LCNFs covers a thin cellulose fiber and is precipitated in a grained structure. In particular, the AFM system was able to determine the nanoscopic location of lignin-rich areas. The present study establishes a strong tool for analyzing the characteristics of lignin-containing materials.

この論文で使われている画像

参考文献

Arslan B, Ju X, Zhang X, Abu-Lail NI (2015) Heterogeneity

and specificity of nanoscale adhesion forces measured

between self-assembled monolayers and lignocellulosic

substrates: a chemical force microscopy Study. Langmuir

31:10233–10245.

https://​doi.​org/​10.​1021/​acs.​langm​uir.​

5b026​33

Azeredo HMC, Rosa MF, Mattoso LHC (2017) Nanocellulose

in bio-based food packaging applications. Ind Crops Prod

97:664–671.

https://​doi.​org/​10.​1016/j.​indcr​op.​2016.​03.​

013

Baati R, Magnin A, Boufi S (2017) High solid content production of nanofibrillar cellulose via continuous extrusion.

ACS Sustain Chem Eng 5:2350–2359. https://​doi.​org/​10.​

1021/​acssu​schem​eng.​6b026​73

Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933. https://​doi.​org/​10.​1201/​

97814​20075​250

Dufrêne YF, Martínez-Martín D, Medalsy I et al (2013) Multiparametric imaging of biological systems by forcedistance curve-based AFM. Nat Methods 10:847–854.

https://​doi.​org/​10.​1038/​nmeth.​2602

Elinski MB, Menard BD, Liu Z, Batteas JD (2017) Adhesion

and friction at graphene/self-assembled monolayer interfaces investigated by atomic force microscopy. J Phys

Chem C 121:5635–5641. https://​doi.​org/​10.​1021/​acs.​jpcc.​

7b000​12

Espinosa E, Rol F, Bras J, Rodríguez A (2019) Production of

lignocellulose nano fi bers from wheat straw by different

fi brillation methods. Comparison of its viability in cardboard recycling process. J Clean Prod 239:118083. https://​

doi.​org/​10.​1016/j.​jclep​ro.​2019.​118083

Fujisawa S, Saito T, Kimura S et al (2013) Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromol 14:1541–1546. https://​

doi.​org/​10.​1021/​bm400​178m

Vol.: (0123456789)

13

11366

Fukuzumi H, Fujisawa S, Saito T, Isogai A (2013) Selective

permeation of hydrogen gas using cellulose nanofibril

film. Biomacromol 14:1705–1709. https://​doi.​org/​10.​

1021/​bm400​377e

Fukuzumi H, Saito T, Iwata T et al (2009) Transparent and

high gas barrier films of cellulose nanofibers prepared by

TEMPO-mediated oxidation. Biomacromol 10:162–165.

https://​doi.​org/​10.​1021/​bm801​065u

Gidh AV, Decker SR, See CH et al (2006) Characterization of

lignin using multi-angle laser light scattering and atomic

force microscopy. Anal Chim Acta 555:250–258. https://​

doi.​org/​10.​1016/j.​aca.​2005.​09.​023

Gierer J (1985) Chemistry of delignification: part 1: general

concept and reactions during pulping. Wood Sci Technol

19:289–312. https://​doi.​org/​10.​1007/​BF003​50807

Gilli E, Schmied F, Diebald S et al (2012) Analysis of lignin

precipitates on ozone treated kraft pulp by FTIR and

AFM. Cellulose 19:249–256. https://​doi.​org/​10.​1007/​

s10570-​011-​9612-1

Gusenbauer C, Nypelö T, Jakob DS et al (2020) Differences

in surface chemistry of regenerated lignocellulose fibers determined by chemically sensitive scanning probe

microscopy. Int J Biol Macromol 165:2520–2527. https://​

doi.​org/​10.​1016/j.​ijbio​mac.​2020.​10.​145

Hassan SS, Williams GA, Jaiswal AK (2018) Emerging technologies for the pretreatment of lignocellulosic biomass.

Bioresour Technol 262:310–318. https://​doi.​org/​10.​

1016/j.​biort​ech.​2018.​04.​099

Hepler PK, Fosket DE (1970) Lignification during secondary

wall formation in coleus: an electron microscopic study.

Am J Bot 57:85–96

Hou XD, Li N, Zong MH (2013) Renewable bio ionic liquidswater mixtures-mediated selective removal of lignin from

rice straw: visualization of changes in composition and

cell wall structure. Biotechnol Bioeng 110:1895–1902.

https://​doi.​org/​10.​1002/​bit.​24862

Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses

on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromol 9:1022–1026. https://​doi.​org/​10.​

1021/​bm701​157n

Iwamoto S, Endo T (2015) 3 Nm thick lignocellulose nano fibers obtained from esterified wood with maleic anhydride.

ACS Macro Lett 4:80–83. https://​doi.​org/​10.​1021/​mz500​

787p

Karimi S, Tahir PM, Karimi A et al (2014) Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from

micro to nano. Carbohydr Polym 101:878–885. https://​

doi.​org/​10.​1016/j.​carbp​ol.​2013.​09.​106

Kose R, Kondo T (2011) Favorable 3D-network formation of

chitin nanofibers dispersed in water prepared using aqueous counter collision. SEN’I GAKKAISHI 67:91–95

Lambert E, Aguié-Béghin V, Dessaint D et al (2019) Real time

and quantitative imaging of lignocellulosic films hydrolysis by atomic force microscopy reveals lignin recalcitrance

at nanoscale. Biomacromol 20:515–527. https://​doi.​org/​

10.​1021/​acs.​biomac.​8b015​39

Li X, Wei Y, Xu J et al (2018) Biotechnology for biofuels quantitative visualization of lignocellulose components in transverse sections of moso bamboo based on

FTIR macro – and micro – spectroscopy coupled with

Vol:. (1234567890)

13

Cellulose (2023) 30:11357–11367

chemometrics. Biotechnol Biofuels. https://​doi.​org/​10.​

1186/​s13068-​018-​1251-4

Liao K, Han L, Yang Z et al (2022) A novel in-situ quantitative profiling approach for visualizing changes in lignin

and cellulose by stained micrographs. Carbohydr Polym

297:119997.

https://​doi.​org/​10.​1016/j.​carbp​ol.​2022.​

119997

Liu C, Li B, Du H et al (2016) Properties of nanocellulose

isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydr

Polym 151:716–724. https://​doi.​org/​10.​1016/j.​carbp​ol.​

2016.​06.​025

Maximova N, Österberg M, Koljonen K, Stenius P (2001)

Lignin adsorption on cellulose fibre surfaces: effect

on surface chemistry, surface morphology and paper

strength. Cellulose 8:113–125. https://​doi.​org/​10.​1023/A:​

10167​21822​763

Nishino T, Arimoto N (2007) All-cellulose composite prepared

by selective dissolving of fiber surface. Biomacromolecules 8:2712–2716. https://​doi.​org/​10.​1021/​bm070​3416

Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687. https://​doi.​org/​10.​

1021/​ma049​300h

Nobuta K, Teramura H, Ito H et al (2016) Characterization

of cellulose nanofiber sheets from different refining processes. Cellulose 23:403–414. https://​doi.​org/​10.​1007/​

s10570-​015-​0792-y

Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically

transparent nanofiber paper. Adv Mater 21:1595–1598.

https://​doi.​org/​10.​1002/​adma.​20080​3174

Nogi M, Yano H (2008) Transparent nanocomposites based

on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater

20:1849–1852. https://​doi.​org/​10.​1002/​adma.​20070​2559

Oliaei E, Lindström T, Berglund LA (2021) Sustainable

development of hot-pressed all-lignocellulose composites—comparing wood fibers and nanofibers. Polymer

(Basel). https://​doi.​org/​10.​3390/​polym​13162​747

Rol F, Karakashov B, Nechyporchuk O et al (2017) Pilotscale twin screw extrusion and chemical pretreatment as

an energy-efficient method for the production of nanofibrillated cellulose at high solid content. ACS Sustain

Chem Eng 5:6524–6531. https://​doi.​org/​10.​1021/​acssu​

schem​eng.​7b006​30

Rooney WL, Blumenthal J, Bean B, Mullet JE (2007)

Designing sorghum as a dedicated bioenergy feedstock.

Biofuels Bioprod Biorefin 1:147–157. https://​doi.​org/​10.​

1002/​bbb.​15

Saito T, Kuramae R, Wohlert J et al (2013) An ultrastrong

nanofibrillar biomaterial: the strength of single cellulose

nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253. https://​doi.​org/​

10.​1021/​bm301​674e

Sasani N, Bock P, Felhofer M, Gierlinger N (2021) Raman

imaging reveals in – situ microchemistry of cuticle and

epidermis of spruce needles. Plant Methods. https://​doi.​

org/​10.​1186/​s13007-​021-​00717-6

Schmetz Q, Teramura H, Morita K et al (2019) Versatility

of a dilute acid/butanol pretreatment investigated on

various lignocellulosic biomasses to produce lignin,

monosaccharides and cellulose in distinct phases. ACS

Cellulose (2023) 30:11357–11367 Sustain Chem Eng 7:11069–11079. https://​doi.​org/​10.​

1021/​acssu​schem​eng.​8b058​41

Selig MJ, Viamajala S, Decker SR et al (2007) Deposition of

lignin droplets produced during dilute acid pretreatment

of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23:1333–1339. https://​doi.​org/​10.​

1021/​bp070​2018

Sluiter A, Hames B, Ruiz R et al (2012) NREL/TP-51042618 analytical procedure: determination of structural

carbohydrates and lignin in Biomass. Lab Anal Proced.

1617(1):1–16

Smullen E, Finnan J, Dowling D, Mulcahy P (2019) The

environmental performance of pretreatment technologies for the bioconversion of lignocellulosic biomass to

ethanol. Renew Energy 142:527–534. https://​doi.​org/​10.​

1016/j.​renene.​2019.​04.​082

Sun R, Tomkinson J, Sun XF, Wang NJ (2000) Fractional

isolation and physico-chemical characterization of

alkali- soluble lignins from fast-growing poplar wood.

Polymer (Guildf) 41:8409–8417. https://​doi.​org/​10.​

1016/​S0032-​3861(00)​00190-7

Takenaka M, Kobayashi T, Inokuma K et al (2017) Mapping

of endoglucanases displayed on yeast cell surface using

atomic force microscopy. Colloids Surf B Biointerfaces

151:134–142. https://​doi.​org/​10.​1016/j.​colsu​rfb.​2016.​12.​

014

Takenaka M, Miyachi Y, Ishii J et al (2015) The mapping of

yeast’s G-protein coupled receptor with an atomic force

microscope. Nanoscale 7:4956–4963. https://​doi.​org/​10.​

1039/​c4nr0​5940a

Taniguchi T, Okamura K (1998) New films produced from

microfibrillated natural fibres. Polym Int 47:291–294.

https://​doi.​org/​10.​1002/​(SICI)​1097-​0126(199811)​47:3%​

3c291::​AID-​PI11%​3e3.0.​CO;2-1

Teramura H, Sasaki K, Oshima T et al (2016) Organosolv

pretreatment of sorghum bagasse using a low concentration of hydrophobic solvents such as 1 – butanol or 1

11367

– pentanol. Biotechnol Biofuels 9:1–11. https://​doi.​org/​10.​

1186/​s13068-​016-​0427-z

Travalini AP, Lamsal B, Magalhães WLE, Demiate IM (2019)

Cassava starch films reinforced with lignocellulose

nanofibers from cassava bagasse. Int J Biol Macromol

139:1151–1161. https://​doi.​org/​10.​1016/j.​ijbio​mac.​2019.​

08.​115

Venuto B, Kindiger B (2008) Forage and biomass feedstock

production from hybrid forage sorghum and sorghumsudangrass hybrids. Grassl Sci 54:189–196. https://​doi.​

org/​10.​1111/j.​1744-​697x.​2008.​00123.x

Westermark U, Lidbrandt O, Eriksson I (1988) Lignin distribution in spruce (Picea abies) determined by mercurization

with SEM-EDXA technique. Wood Sci Technol 22:243–

250. https://​doi.​org/​10.​1007/​BF003​86019

Wise LE, Maxine M, D’Addieco A (1946) Chlorite holocellulose, its fractionation and bearing on summative wood

analysis and on studies on the hemicelluloses. Pap Trade

J 122:35–43

Wise LE, Ratliff EK (1947) Quantitative isolation of hemicelluloses and the summative analysis of wood. Anal Chem

19:459–462. https://​doi.​org/​10.​1021/​ac600​07a010

Yang Q, Fujisawa S, Saito T, Isogai A (2012) Improvement

of mechanical and oxygen barrier properties of cellulose

films by controlling drying conditions of regenerated cellulose hydrogels. Cellulose 19:695–703. https://​doi.​org/​

10.​1007/​s10570-​012-​9683-7

Zoghlami A, Paës G (2019) Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Front

Chem 7:874. https://​doi.​org/​10.​3389/​fchem.​2019.​00874

Publisher’s Note Springer Nature remains neutral with regard

to jurisdictional claims in published maps and institutional

affiliations.

Vol.: (0123456789)

13

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る