リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Seed Mucilage Promotes Dispersal of Plantago asiatica Seeds by Facilitating Attachment to Shoes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Seed Mucilage Promotes Dispersal of Plantago asiatica Seeds by Facilitating Attachment to Shoes

Abe Nanako Koyama Kohei Okamoto Azumi Katayama Kowa Kato Yura Mimura Natsuki Okoshi Shoji Tanaka Yuki 帯広畜産大学

2022.06.14

概要

Understanding the mechanisms underlying seed dispersal is a fundamental issue in plant ecology and vegetation management. Several species demonstrate myxospermy, a phenomenon where the seeds form mucilage after absorbing water. Mucilage is thought to act as a glue, enabling seeds to attach to the external surfaces of dispersing agents. However, there have been no quantitative investigations of the efficacy of this function of seed mucilage. We performed a trampling and walking experiment to investigate the seed dispersal of a perennial herb, Asian plantain (Plantago asiatica L.), which forms polysaccharide mucilage upon hydration. Our experiment showed that: (1) after trampling, more seeds of P. asiatica attached to shoes in wet conditions (after rainfall), in which seed mucilage was created, than in dry conditions (no rainfall); and (2) after walking for 1000 m, more seeds remained attached to shoes in wet conditions than in dry conditions. Our results indicate that mucilage promotes the adherence of seeds to the surface of vectors. We therefore provide the first empirical evidence that seed mucilage facilitates epizoochory and human-mediated dispersal.

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Bullock, S.H.; Primack, R.B. Comparative experimental study of seed dispersal on animals. Ecology 1977, 58, 681–686. [CrossRef]

Carey, P.; Watkinson, A. The dispersal and fates of seeds of the winter annual grass Vulpia ciliata. J. Ecol. 1993, 81, 759–767.

[CrossRef]

Bruun, H.H.; Poschlod, P. Why are small seeds dispersed through animal guts: Large numbers or seed size per se? Oikos 2006,

113, 402–411. [CrossRef]

Bullock, J.M.; Wichmann, M.C.; Hails, R.S.; Hodgson, D.J.; Alexander, M.J.; Morley, K.; Knopp, T.; Ridding, L.E.; Hooftman, D.A.P.

Human-mediated dispersal and disturbance shape the metapopulation dynamics of a long-lived herb. Ecology 2020, 101, e03087.

[CrossRef]

Liu, Z.; Evans, M. Effect of tree density on seed production and dispersal of birch (Betula pendula Roth and Betula pubescens Ehrhs).

Forests 2021, 12, 929. [CrossRef]

Martínez-López, V.; García, C.; Zapata, V.; Robledano, F.; De la Rúa, P. Intercontinental long-distance seed dispersal across the

Mediterranean Basin explains population genetic structure of a bird-dispersed shrub. Mol. Ecol. 2020, 29, 1408–1420. [CrossRef]

[PubMed]

Al-Qthanin, R.N.; Alharbi, S.A. Spatial structure and genetic variation of a mangrove species (Avicennia marina (Forssk.) Vierh) in

the Farasan Archipelago. Forests 2020, 11, 1287. [CrossRef]

Whinam, J.; Chilcott, N.; Bergstrom, D.M. Subantarctic hitchhikers: Expeditioners as vectors for the introduction of alien

organisms. Biol. Conserv. 2005, 121, 207–219. [CrossRef]

Scott, K.A. Potential for the dispersal of weed seeds on clothing: An example with Gamba Grass in northern Australia. Ecol.

Manag. Restor. 2009, 10, 71–73. [CrossRef]

Ansong, M.; Pickering, C. Long-distance dispersal of Black Spear Grass (Heteropogon contortus) seed on socks and trouser legs by

walkers in Kakadu National Park. Ecol. Manag. Restor. 2013, 14, 71–74. [CrossRef]

von der Lippe, M.; Bullock, J.M.; Kowarik, I.; Knopp, T.; Wichmann, M. Human-Mediated Dispersal of Seeds by the Airflow of

Vehicles. PLoS ONE 2013, 8, e52733. [CrossRef]

Sustainability 2022, 14, 6909

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

7 of 10

Pickering, C.; Ansong, M. Human-mediated dispersal of the seeds of Australian weeds. Victorian Nat. 2020, 137, 269–275.

[CrossRef]

Runghen, R.; Bramon Mora, B.; Godoy-Lorite, A.; Stouffer, D.B. Assessing unintended human-mediated dispersal using visitation

networks. J. Appl. Ecol. 2021, 58, 777–788. [CrossRef]

Wróbel, A.; Kurek, P.; Bogdziewicz, M.; Dobrowolska, D.; Zwolak, R. Avian dispersal of an invasive oak is modulated by acorn

traits and the presence of a native oak. For. Ecol. Manag. 2022, 505, 119866. [CrossRef]

Yang, M.; Pickering, C.M.; Xu, L.; Lin, X. Tourist vehicle as a selective mechanism for plant dispersal: Evidence from a national

park in the eastern Himalaya. J. Environ. Manag. 2021, 285, 112109. [CrossRef]

Yoshikawa, T.; Masaki, T.; Motooka, M.; Hino, D.; Ueda, K. Highly toxic seeds of the Japanese star anise Illicium anisatum are

dispersed by a seed-caching bird and a rodent. Ecol. Res. 2018, 33, 495–504. [CrossRef]

Tsuji, Y.; Campos-Arceiz, A.; Prasad, S.; Kitamura, S.; McConkey, K.R. Intraspecific differences in seed dispersal caused by

differences in social rank and mediated by food availability. Sci. Rep. 2020, 10, 1532. [CrossRef] [PubMed]

Almazán-Núñez, R.C.; Alvarez-Alvarez, E.A.; Sierra-Morales, P.; Rodríguez-Godínez, R. Fruit Size and Structure of Zoochorous

Trees: Identifying Drivers for the Foraging Preferences of Fruit-Eating Birds in a Mexican Successional Dry Forest. Animals 2021,

11, 3343. [CrossRef]

Almeida, A.P.; Gomes, M.; Rabaça, J.E.; Ramos, J.A. Songbirds promote connectivity between riparian galleries and adjacent

habitats. Ecol. Res. 2021, 36, 45–56. [CrossRef]

Araki, N.; Hirayama, K. Differences in the fruit removal patterns of Cleyera japonica by frugivorous birds in two forest stands at

different developmental stages in a warm-temperate region. Ecol. Res. 2021, 36, 189–201. [CrossRef]

Ben-Zvi, G.; Seifan, M.; Giladi, I. Ant guild identity determines seed fate at the post-removal seed dispersal stages of a desert

perennial. Insects 2021, 12, 147. [CrossRef]

Blanco, G.; Romero-Vidal, P.; Carrete, M.; Chamorro, D.; Bravo, C.; Hiraldo, F.; Tella, J.L. Burrowing parrots Cyanoliseus patagonus

as long-distance seed dispersers of keystone algarrobos, genus Prosopis, in the Monte Desert. Diversity 2021, 13, 204. [CrossRef]

Selås, V.; Framstad, E.; Rolstad, J.; Sonerud, G.A.; Spidsø, T.K.; Wegge, P. Bilberry seed production explains spatiotemporal

synchronicity in bank vole population fluctuations in Norway. Ecol. Res. 2021, 36, 409–419. [CrossRef]

Tanaka, K.; Tokuda, M. Road preference of ants in a Japanese warm temperate forest and its implications for the regeneration of

myrmecochorous sedges. Ecol. Res. 2021, 36, 629–636. [CrossRef]

Teixido, A.L.; Fuzessy, L.F.; Souza, C.S.; Gomes, I.N.; Kaminski, L.A.; Oliveira, P.C.; Maruyama, P.K. Anthropogenic impacts on

plant-animal mutualisms: A global synthesis for pollination and seed dispersal. Biol. Conserv. 2022, 266, 109461. [CrossRef]

Vazquez, M.S.; Rodriguez-Cabal, M.A.; Amico, G.C. The forest gardener: A marsupial with a key seed-dispersing role in the

Patagonian temperate forest. Ecol. Res. 2022, 37, 270–283. [CrossRef]

Gómez, J.M.; Schupp, E.W.; Jordano, P. Synzoochory: The ecological and evolutionary relevance of a dual interaction. Biol. Rev.

2019, 94, 874–902. [CrossRef]

Wyatt, G.E.; Hamrick, J.L.; Trapnell, D.W. The role of anthropogenic dispersal in shaping the distribution and genetic composition

of a widespread North American tree species. Ecol. Evol. 2021, 11, 11515–11532. [CrossRef]

Wichmann, M.C.; Alexander, M.J.; Soons, M.B.; Galsworthy, S.; Dunne, L.; Gould, R.; Fairfax, C.; Niggemann, M.; Hails, R.S.;

Bullock, J.M. Human-mediated dispersal of seeds over long distances. P. Roy. Soc. B-Biol. Sci. 2009, 276, 523–532. [CrossRef]

Ansong, M.; Pickering, C. Weed seeds on clothing: A global review. J. Environ. Manag. 2014, 144, 203–211. [CrossRef]

Ansong, M.; Pickering, C. The effects of seed traits and fabric type on the retention of seed on different types of clothing. Basic

Appl. Ecol. 2016, 17, 516–526. [CrossRef]

Healy, A.J. Seed dispersal by human activity. Nature 1943, 151, 140. [CrossRef]

Falinski,

J. Anthropochory in xerothermic grasslands in the light of experimental data. Acta. Soc. Bot. Pol. 1972, 41, 357–368.

[CrossRef]

Mount, A.; Pickering, C.M. Testing the capacity of clothing to act as a vector for non-native seed in protected areas. J. Environ.

Manag. 2009, 91, 168–179. [CrossRef]

Pickering, C.M.; Mount, A.; Wichmann, M.C.; Bullock, J.M. Estimating human-mediated dispersal of seeds within an Australian

protected area. Biol. Invasions 2011, 13, 1869–1880. [CrossRef]

Ansong, M.; Pickering, C. What’s a weed? Knowledge, attitude and behaviour of park visitors about weeds. PLoS ONE 2015,

10, e0135026. [CrossRef]

Ansong, M.; Pickering, C.; Arthur, J.M. Modelling seed retention curves for eight weed species on clothing. Austral. Ecol. 2015, 40,

765–774. [CrossRef]

Clifford, H.T. Seed dispersal on footwear. P. Bot. Soc. Brit. Isles 1956, 2, 129–131.

Higashino, P.; Guyer, W.; Stone, C. The Kilauea wilderness marathon and crater rim runs: Sole searching experiences. Hawaii. Bot.

Soc. 1983, 22, 25–28.

Clifford, H.T. Seed Dispersal by Motor Vehicles. J. Ecol. 1959, 47, 311–315. [CrossRef]

Hodkinson, D.J.; Thompson, K. Plant dispersal: The role of man. J. Appl. Ecol. 1997, 34, 1484–1496. [CrossRef]

Manzano, P.; Malo, J.E. Extreme long-distance seed dispersal via sheep. Front. Ecol. Environ. 2006, 4, 244–248. [CrossRef]

Woodruffe-Peacock, E.A. A Fox-Covert Study. J. Ecol. 1918, 6, 110–125. [CrossRef]

Baiges, J.; Espadaler, X.; Blanché, C. Seed dispersal in W Mediterranean Euphorbia species. Bot. Chron. 1991, 10, 697–705.

Sustainability 2022, 14, 6909

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

8 of 10

Grubert, M. Studies on the distribution of myxospermy among seeds and fruits of Angiospermae and its ecological importance.

Acta Biol. Venez. 1974, 8, 315–352.

van der Pijl, L. Principles of Dispersal in Higher Plants, 3rd Revised and Expanded ed.; Springer: Berlin, Germany, 1982.

Alcántara, J.M.; Rey, P.J. Conflicting selection pressures on seed size: Evolutionary ecology of fruit size in a bird-dispersed tree,

Olea europaea. J. Evol. Biol. 2003, 16, 1168–1176. [CrossRef]

Nunez, C.V.; de Oliveira, M.L.; Lima, R.D.; Diaz, I.E.C.; Sargentini, É.; Pereira, O.L.; Araújo, L.M. Chemical analyses confirm a

rare case of seed dispersal by bees. Apidologie 2008, 39, 618–626. [CrossRef]

Wallace, H.M.; Howell, M.G.; Lee, D.J. Standard yet unusual mechanisms of long-distance dispersal: Seed dispersal of Corymbia

torelliana by bees. Divers. Distrib. 2008, 14, 87–94. [CrossRef]

Case, S.B.; Tarwater, C.E. Functional traits of avian frugivores have shifted following species extinction and introduction in the

Hawaiian Islands. Funct. Ecol. 2020, 34, 2467–2476. [CrossRef]

Valenta, K.; Nevo, O. The dispersal syndrome hypothesis: How animals shaped fruit traits, and how they did not. Funct. Ecol.

2020, 34, 1158–1169. [CrossRef]

Koyama, K.; Tashiro, M. No effect of selective maturation on fruit traits for a bird-dispersed species, Sambucus racemosa. Plants

2021, 10, 376. [CrossRef]

Phan, J.L.; Tucker, M.R.; Khor, S.F.; Shirley, N.; Lahnstein, J.; Beahan, C.; Bacic, A.; Burton, R.A. Differences in glycosyltransferase

family 61 accompany variation in seed coat mucilage composition in Plantago spp. J. Exp. Bot. 2016, 67, 6481–6495. [CrossRef]

Kreitschitz, A.; Kovalev, A.; Gorb, S.N. “Sticky invasion”—the physical properties of Plantago lanceolata L. seed mucilage. Beilstein.

J. Nanotech. 2016, 7, 1918–1927. [CrossRef]

Kreitschitz, A.; Gorb, S.N. How does the cell wall ‘stick’ in the mucilage? A detailed microstructural analysis of the seed coat

mucilaginous cell wall. Flora 2017, 229, 9–22. [CrossRef]

Kreitschitz, A.; Kovalev, A.; Gorb, S.N. Plant seed mucilage as a glue: Adhesive properties of hydrated and dried-in-contact seed

mucilage of five plant species. Int. J. Mol. Sci. 2021, 22, 1443. [CrossRef]

Cowley, J.M.; Burton, R.A. The goo-d stuff: Plantago as a myxospermous model with modern utility. New Phytol. 2021, 229,

1917–1923. [CrossRef]

Viudes, S.; Burlat, V.; Dunand, C. Seed mucilage evolution: Diverse molecular mechanisms generate versatile ecological functions

for particular environments. Plant Cell Environ. 2020, 43, 2857–2870. [CrossRef]

Ryding, O. Myxocarpy in the Nepetoideae (Lamiaceae) with notes on myxodiaspory in general. Syst. Geogr. Plants 2001, 71,

503–514. [CrossRef]

LoPresti, E.F.; Pan, V.; Goidell, J.; Weber, M.G.; Karban, R. Mucilage-bound sand reduces seed predation by ants but not by

reducing apparency: A field test of 53 plant species. Ecology 2019, 100, e02809. [CrossRef]

Kreitschitz, A.; Haase, E.; Gorb, S.N. The role of mucilage envelope in the endozoochory of selected plant taxa. Sci. Nat. 2020,

108, 2. [CrossRef]

Pan, V.S.; Girvin, C.; LoPresti, E.F. Anchorage by seed mucilage prevents seed dislodgement in high surface flow: A mechanistic

investigation. Ann. Bot. 2022, mcac045. [CrossRef]

Carlquist, S. The biota of long-distance dispersal. V. Plant dispersal to Pacific Islands. B. Torrey Bot. Club 1967, 94, 129–162.

[CrossRef]

Swarbrick, J.T. External mucilage production by the seeds of British plants. Bot. J. Linn. Soc. 1971, 64, 157–162. [CrossRef]

Fahn, A.; Werker, E. Anatomical mechanisms of seed dispersal. In Seed Biology: Importance, Development, and Germination;

Academic Press: New York, NY, USA, 1972; Volume 1, pp. 151–221.

Sorensen, A.E. Seed dispersal by adhesion. Annu. Rev. Ecol. Syst. 1986, 17, 443–463. [CrossRef]

Norton, D.A.; Delange, P.J.; Garnock-Jones, P.J.; Given, D.R. The role of seabirds and seals in the survival of coastal plants: Lessons

from New Zealand Lepidium (Brassicaceae). Biodivers. Conserv. 1997, 6, 765–785. [CrossRef]

Yang, X.; Baskin, J.M.; Baskin, C.C.; Huang, Z. More than just a coating: Ecological importance, taxonomic occurrence and

phylogenetic relationships of seed coat mucilage. Perspect. Plant Ecol. Evol. Syst. 2012, 14, 434–442. [CrossRef]

Kreitschitz, A.; Vallès, J. Achene morphology and slime structure in some taxa of Artemisia L. and Neopallasia L. (Asteraceae).

Flora 2007, 202, 570–580. [CrossRef]

Kreitschitz, A. Biological properties of fruit and seed slime envelope: How to live, fly, and not die. In Functional Surfaces in Biology:

Little Structures with Big Effects Volume 1; Gorb, S.N., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2009; pp. 11–30.

[CrossRef]

Kreitschitz, A.; Kovalev, A.; Gorb, S.N. Slipping vs. sticking: Water-dependent adhesive and frictional properties of Linum

usitatissimum L. seed mucilaginous envelope and its biological significance. Acta Biomater. 2015, 17, 152–159. [CrossRef]

Dybka-St˛epien,

´ K.; Otlewska, A.; Gó´zd´z, P.; Piotrowska, M. The renaissance of plant mucilage in health promotion and industrial

applications: A review. Nutrients 2021, 13, 3354. [CrossRef] [PubMed]

Harper, J.L.; Benton, R.A. The behaviour of seeds in soil: II. The germination of seeds on the surface of a water supplying substrate.

J. Ecol. 1966, 54, 151–166. [CrossRef]

Young, J.A.; Evans, R.A. Mucilaginous seed coats. Weed Sci. 1973, 21, 52–54. [CrossRef]

Tomoda, M.; Yokoi, M.; Ishikawa, K. Plant mucilages. XXIX. Isolation and characterization of a mucous polysaccharide,

‘Plantago-mucilage A’ from the seeds of Plantago major var. asiatica. Chem. Pharm. Bull. 1981, 29, 2877–2884. [CrossRef]

Sustainability 2022, 14, 6909

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

9 of 10

Kulkarni, G.; Gowthamarajan, K.; Rao, B.; Suresh, B. Evaluation of binding properties of Plantago ovata and Trigonella foenum

graecum mucilages. Indian Drugs 2002, 39, 422–425.

Malviya, R.; Srivastava, P.; Kulkarni, G. Applications of mucilages in drug delivery-a review. Adv. Biol. Res. 2011, 5, 1–7.

Western, T.L. The sticky tale of seed coat mucilages: Production, genetics, and role in seed germination and dispersal. Seed Sci.

Res. 2011, 22, 1–25. [CrossRef]

Yu, L.; Yakubov, G.E.; Zeng, W.; Xing, X.; Stenson, J.; Bulone, V.; Stokes, J.R. Multi-layer mucilage of Plantago ovata seeds:

Rheological differences arise from variations in arabinoxylan side chains. Carbohyd. Polym. 2017, 165, 132–141. [CrossRef]

Ji, X.; Hou, C.; Guo, X. Physicochemical properties, structures, bioactivities and future prospective for polysaccharides from

Plantago L. (Plantaginaceae): A review. Int. J. Biol. Macromol. 2019, 135, 637–646. [CrossRef]

Mukherjee, T.; Lerma-Reyes, R.; Thompson, K.A.; Schrick, K. Making glue from seeds and gums: Working with plant-based

polymers to introduce students to plant biochemistry. Biochem. Mol. Biol. Edu. 2019, 47, 468–475. [CrossRef]

Fierascu, R.C.; Fierascu, I.; Ortan, A.; Paunescu, A. Plantago media L.—Explored and potential applications of an underutilized

plant. Plants 2021, 10, 265. [CrossRef]

Tsai, A.Y.-L.; McGee, R.; Dean, G.H.; Haughn, G.W.; Sawa, S. Seed Mucilage: Biological Functions and Potential Applications in

Biotechnology. Plant Cell Physiol. 2021, 62, 1847–1857. [CrossRef]

Cowley, J.M.; O’Donovan, L.A.; Burton, R.A. The composition of Australian Plantago seeds highlights their potential as

nutritionally-rich functional food ingredients. Sci. Rep. 2021, 11, 12692. [CrossRef]

The Global Biodiversity Information Facility. Available online: http://www.gbif.org (accessed on 14 February 2022).

Yin, J.-Y.; Chen, H.-H.; Lin, H.-X.; Xie, M.-Y.; Nie, S.-P. Structural features of alkaline extracted polysaccharide from the seeds of

Plantago asiatica L. and its rheological properties. Molecules 2016, 21, 1181. [CrossRef] [PubMed]

Yamashita, T.; Yoshida, M.; Ohnuna, S. Germinated plants from seeds carried by tourist’s shoes into Mt. Tateyama, Toyama

Prefecture, Central Japan. Bull. Bot. Gard. Toyama 2008, 13, 15–21.

Pickering, C.; Mount, A. Do tourists disperse weed seed? A global review of unintentional human-mediated terrestrial seed

dispersal on clothing, vehicles and horses. J. Sustain. Tour. 2010, 18, 239–256. [CrossRef]

Japan Meteorological Agency. Available online: https://www.jma.go.jp (accessed on 25 March 2022).

R Core Team. R: A Language and Environment for Satistical Computing. R Foundation for Statistical Computing; R Core Team: Vienna,

Austria, 2021.

Wilke, C.O. cowplot: Streamlined plot theme and plot annotations for ‘ggplot2’. CRAN Repos 2016, 2, R2.

Clarke, E.; Sherrill-Mix, S. ggbeeswarm: Categorical Scatter (Violin Point) Plots. 2017. Available online: https://cran.r-project.

org/web/packages/ggbeeswarm/index.html (accessed on 17 January 2021).

Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer International Publishing: Cham, Switzerland, 2016.

Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 48. [CrossRef]

Staab, M.; Pereira-Peixoto, M.H.; Klein, A.-M. Exotic garden plants partly substitute for native plants as resources for pollinators

when native plants become seasonally scarce. Oecologia 2020, 194, 465–480. [CrossRef]

Iwabe, R.; Koyama, K.; Komamura, R. Shade avoidance and light foraging of a clonal woody species, Pachysandra terminalis.

Plants 2021, 10, 809. [CrossRef]

Barr, D.J.; Levy, R.; Scheepers, C.; Tily, H.J. Random effects structure for confirmatory hypothesis testing: Keep it maximal. J. Mem.

Lan. 2013, 68, 255–278. [CrossRef]

Schaber, C.F.; Kreitschitz, A.; Gorb, S.N. Friction-active surfaces based on free-standing anchored cellulose nanofibrils. ACS Appl.

Mater. Inter. 2018, 10, 37566–37574. [CrossRef] [PubMed]

North, H.M.; Berger, A.; Saez-Aguayo, S.; Ralet, M.-C. Understanding polysaccharide production and properties using seed coat

mutants: Future perspectives for the exploitation of natural variants. Ann. Bot. 2014, 114, 1251–1263. [CrossRef]

García-Fayos, P.; Cerda, A. Seed losses by surface wash in degraded Mediterranean environments. Catena 1997, 29, 73–83.

[CrossRef]

García-Fayos, P.; Bochet, E.; Cerdà, A. Seed removal susceptibility through soil erosion shapes vegetation composition. Plant Soil

2010, 334, 289–297. [CrossRef]

Huang, Z.; Boubriak, I.; Osborne, D.J.; Dong, M.; Gutterman, Y. Possible role of pectin-containing mucilage and dew in repairing

embryo DNA of seeds adapted to desert conditions. Ann. Bot. 2008, 101, 277–283. [CrossRef]

Kreitschitz, A.; Tadele, Z.; Gola, E.M. Slime cells on the surface of Eragrostis seeds maintain a level of moisture around the grain to

enhance germination. Seed Sci. Res. 2009, 19, 27–35. [CrossRef]

Huang, Z.; Yitzchak, G.; Zhenghai, H. Structure and function of mucilaginous achenes of Artemisia monosperma inhabiting the

Negev desert of Israel. Isr. J. Plant Sci. 2000, 48, 255–266. [CrossRef]

Pan, V.S.; McMunn, M.; Karban, R.; Goidell, J.; Weber, M.G.; LoPresti, E.F. Mucilage binding to ground protects seeds of many

plants from harvester ants: A functional investigation. Funct. Ecol. 2021, 35, 2448–2460. [CrossRef]

Vazaˇcová, K.; Münzbergová, Z. Simulation of seed digestion by birds: How does it reflect the real passage through a pigeon’s

gut? Folia Geobot. 2013, 48, 257–269. [CrossRef]

Sustainability 2022, 14, 6909

10 of 10

107. Lee, K.; Kreitschitz, A.; Lee, J.; Gorb, S.N.; Lee, H. Localization of phenolic compounds at an air–solid interface in plant seed

mucilage: A strategy to maximize its biological function? ACS Appl. Mater. Inter. 2020, 12, 42531–42536. [CrossRef]

108. Yang, X.; Baskin, C.C.; Baskin, J.M.; Zhang, W.; Huang, Z. Degradation of seed mucilage by soil microflora promotes early

seedling growth of a desert sand dune plant. Plant Cell Environ. 2012, 35, 872–883. [CrossRef]

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る