リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Cholesterol accumulation in ovarian follicles causes ovulation defects in Abca1a⁻/⁻ Japanese medaka (Oryzias latipes)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Cholesterol accumulation in ovarian follicles causes ovulation defects in Abca1a⁻/⁻ Japanese medaka (Oryzias latipes)

Futamata, Ryota Kinoshita, Masato Ogiwara, Katsueki Kioka, Noriyuki Ueda, Kazumitsu 京都大学 DOI:10.1016/j.heliyon.2023.e13291

2023.02

概要

ATP-binding cassette A1 (ABCA1) is a membrane protein, which exports excess cellular cholesterol to generate HDL to reduce the risk of the onset of cardiovascular diseases (CVD). In addition, ABCA1 exerts pleiotropic effects on such as inflammation, tissue repair, and cell proliferation and migration. In this study, we explored the novel physiological roles of ABCA1 using Japanese medaka (Oryzias latipes), a small teleost fish. Three Abca1 genes were found in the medaka genome. ABCA1A and ABCA1C exported cholesterol to generate nascent HDL as human ABCA1 when expressed in HEK293 cells. To investigate their physiological roles, each Abca1-deficient fish was generated using the CRISPR-Cas9 system. Abca1a−/− female medaka was found to be infertile, while Abca1b−/− and Abca1c−/− female medaka were fertile. In vitro ovarian follicle culture suggested that Abca1a deficiency causes ovulation defects. In the ovary, ABCA1A was expressed in theca cells, an outermost layer of the ovarian follicle. Total cholesterol content of Abca1a−/− ovary was significantly higher than that of the wild-type, while estrogen and progestin contents were compatible with those of the wild-type. Furthermore, cholesterol loading to the wild-type follicles caused ovulation defects. These results suggest that ABCA1A in theca cells regulates cholesterol content in the ovarian follicles and its deficiency inhibits successful ovulation through cholesterol accumulation in the ovarian follicle.

この論文で使われている画像

参考文献

[1] K. Ueda, ABC proteins protect the human body and maintain optimal health, Biosci. Biotechnol. Biochem. 75 (2011) 401–409.

[2] C. Thomas, S.G. Aller, K. Beis, E.P. Carpenter, G. Chang, L. Chen, E. Dassa, M. Dean, F. Duong Van Hoa, D. Ekiert, et al., Structural and functional diversity calls

for a new classification of ABC transporters, FEBS Lett. 594 (2020) 3767–3775.

[3] M. Dean, T. Annilo, Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates, Annu. Rev. Genom. Hum. Genet. 6 (2005) 123–142.

[4] M. Nakato, N. Shiranaga, M. Tomioka, H. Watanabe, J. Kurisu, M. Kengaku, N. Komura, H. Ando, Y. Kimura, N. Kioka, et al., ABCA13 dysfunction associated

with psychiatric disorders causes impaired cholesterol traf fi cking, J. Biol. Chem. 296 (2021), 100166, https://doi.org/10.1074/jbc.RA120.015997. Available

at:.

[5] K. Nagata, A. Yamamoto, N. Ban, A.R. Tanaka, M. Matsuo, N. Kioka, N. Inagaki, K. Ueda, Human ABCA3, a product of a responsible gene for abca3 for fatal

surfactant deficiency in newborns, exhibits unique ATP hydrolysis activity and generates intracellular multilamellar vesicles, Biochem. Biophys. Res. Commun.

324 (2004) 262–268.

[6] M. Akiyama, Y. Sugiyama-Nakagiri, K. Sakai, J.R. McMillan, M. Goto, K. Arita, Y. Tsuji-Abe, N. Tabata, K. Matsuoka, R. Sasaki, et al., Mutations in lipid

transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer, J. Clin. Invest. 115 (2005) 1777–1784.

[7] A.R. Tanaka, Y. Ikeda, S. Abe-Dohmae, R. Arakawa, K. Sadanami, A. Kidera, S. Nakagawa, T. Nagase, R. Aoki, N. Kioka, et al., Human ABCA1 contains a large

amino-terminal extracellular domain homologous to an epitope of Sj¨

ogren’s syndrome, Biochem. Biophys. Res. Commun. 283 (2001) 1019–1025.

[8] A. Brooks-Wilson, M. Marcil, S.M. Clee, L.H. Zhang, K. Roomp, M. Van Dam, L. Yu, C. Brewer, J.A. Collins, H.O.F. Molhuizen, et al., Mutations in ABC1 in

Tangier disease and familial high-density lipoprotein deficiency, Nat. Genet. 22 (1999) 336–345.

[9] S. Rust, M. Rosier, H. Funke, J. Real, Z. Amoura, J.C. Piette, J.F. Deleuze, H.B. Brewer, N. Duverger, P. Den`efle, et al., Tangier disease is caused by mutations in

the gene encoding ATP-binding cassette transporter 1, Nat. Genet. 22 (1999) 352–355.

[10] M. Bodzioch, E. Ors´

o, J. Klucken, T. Langmann, A. B¨

ottcher, W. Diederich, W. Drobnik, S. Barlage, C. Büchler, M. Porsch-Ozcürümez,

et al., The gene encoding

ATP-binding cassette transporter I is mutated in Tangier disease, Nat. Genet. 22 (1999) 347–351.

[11] J. McNeish, R.J. Aiello, D. Guyot, T. Turi, C. Gabel, C. Aldinger, K.L. Hoppe, M.L. Roach, L.J. Royer, J. De Wet, et al., High density lipoprotein deficiency and

foam cell accumulation in mice with targeted disruption of ATp-binding cassette transporter-1, Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 4245–4250.

[12] T.A. Christiansen-Weber, J.R. Voland, Y. Wu, K. Ngo, B.L. Roland, S. Nguyen, P.A. Peterson, W.P. Fung-Leung, Functional loss of ABCA1 in mice causes severe

placental malformation, aberrant lipid distribution, and kidney glomerulonephritis as well as high-density lipoprotein cholesterol deficiency, Am. J. Pathol. 157

(2000) 1017–1029, https://doi.org/10.1016/S0002-9440(10)64614-7. Available at:.

[13] S.A. Schreyer, L.K. Hart, A.D. Attie, Hypercatabolism of lipoprotein-free apolipoprotein A-I in HDL-deficient mutant chickens, Arterioscler. Thromb. 14 (1994)

2053–2059.

[14] E. Ors´

o, C. Broccardo, W.E. Kaminski, A. B¨

ottcher, G. Liebisch, W. Drobnik, A. G¨

otz, O. Chambenoit, W. Diederich, T. Langmann, et al., Transport of lipids from

Golgi to plasma membrane is defective in tangier disease patients and Abc1-deficient mice, Nat. Genet. 24 (2000) 192–196.

[15] W. Drobnik, B. Lindenthal, B. Lieser, M. Ritter, T.C. Weber, G. Liebisch, U. Giesa, M. Igel, H. Borsukova, C. Büchler, et al., ATP-binding cassette transporter A1

(ABCA1) affects total body sterol metabolism, Gastroenterology 120 (2001) 1203–1211.

[16] F. Poernama, S.A. Schreyer, J.J. Bitgood, M.E. Cook, A.D. Attie, Spontaneous high density lipoprotein deficiency syndrome associated with a Z-linked mutation

in chickens, J. Lipid Res. 31 (1990) 955–963.

[17] A.D. Attie, Y. Hamon, A.R. Brooks-Wilson, M.P. Gray-Keller, M.L.E. MacDonald, V. Rigot, A. Tebon, L.H. Zhang, J.D. Mulligan, R.R. Singaraja, et al.,

Identification and functional analysis of a naturally occurring E89K mutation in the ABCA1 gene of the WHAM chicken, J. Lipid Res. 43 (2002) 1610–1617.

[18] A.R. Tanaka, S. Abe-Dohmae, T. Ohnishi, R. Aoki, G. Morinaga, K.I. Okuhira, Y. Ikeda, F. Kano, M. Matsuo, N. Kioka, et al., Effects of mutations of ABCA1 in the

first extracellular domain on subcellular trafficking and ATP binding/hydrolysis, J. Biol. Chem. 278 (2003) 8815–8819.

[19] W.P. Castelli, J.T. Doyle, T. Gordon, C.G. Hames, M.C. Hjortland, S.B. Hulley, A. Kagan, W.J. Zukel, HDL cholesterol and other lipids in coronary heart disease.

The cooperative lipoprotein phenotyping study, Circulation 55 (1977) 767–772.

[20] A.G. Groenen, B. Halmos, A.R. Tall, M. Westerterp, Cholesterol efflux pathways, inflammation, and atherosclerosis, Crit. Rev. Biochem. Mol. Biol. 56 (2021)

426–439, https://doi.org/10.1080/10409238.2021.1925217. Available at:.

[21] G.M. Ducasa, A. Mitrofanova, S.K. Mallela, X. Liu, J. Molina, A. Sloan, C.E. Pedigo, M. Ge, J.V. Santos, Y. Hernandez, et al., ATP-binding cassette A1 deficiency

causes cardiolipin-driven mitochondrial dysfunction in podocytes, J. Clin. Invest. 129 (2019) 3387–3400.

10

Heliyon 9 (2023) e13291

R. Futamata et al.

[22] M. Westerterp, E.L. Gautier, A. Ganda, M.M. Molusky, W. Wang, P. Fotakis, N. Wang, G.J. Randolph, V.D. D’Agati, L. Yvan-Charvet, et al., Cholesterol

accumulation in dendritic cells links the inflammasome to acquired immunity, Cell Metabol. 25 (2017) 1294–1304, https://doi.org/10.1016/j.

cmet.2017.04.005, e6. Available at:.

[23] Y.M. Morizawa, Y. Hirayama, N. Ohno, S. Shibata, E. Shigetomi, Y. Sui, J. Nabekura, K. Sato, F. Okajima, H. Takebayashi, et al., Reactive astrocytes function as

phagocytes after brain ischemia via ABCA1-mediated pathway, Nat. Commun. 8 (2017).

[24] S.H. Moon, C.H. Huang, S.L. Houlihan, K. Regunath, W.A. Freed-Pastor, J.P. Morris, D.F. Tschaharganeh, E.R. Kastenhuber, A.M. Barsotti, R. Culp-Hill, et al.,

p53 represses the mevalonate pathway to mediate tumor suppression, Cell 176 (2019) 564–580.e19, https://doi.org/10.1016/j.cell.2018.11.011. Available at:.

[25] S. Ito, N. Kioka, K. Ueda, Cell migration is negatively modulated by ABCA1, Biosci. Biotechnol. Biochem. 83 (2019) 463–471, https://doi.org/10.1080/

09168451.2018.1547105. Available at:.

[26] M. Frechin, T. Stoeger, S. Daetwyler, C. Gehin, N. Battich, E.M. Damm, L. Stergiou, H. Riezman, L. Pelkmans, Cell-intrinsic adaptation of lipid composition to

local crowding drives social behaviour, Nature 523 (2015) 88–91.

[27] R.J. Aiello, D. Brees, O.L. Francone, ABCA1-deficient mice: insights into the role of monocyte lipid efflux in HDl formation and inflammation, Arterioscler.

Thromb. Vasc. Biol. 23 (2003) 972–980.

[28] Y. Murakami, S. Ansai, A. Yonemura, M. Kinoshita, An efficient system for homology-dependent targeted gene integration in medaka (Oryzias latipes), Zool.

Lett. 3 (2017) 1–13.

[29] M. Tanaka, M. Kinoshita, Recent progress in the generation of transgenic medaka (Oryzias latipes), Zool. Sci. (Tokyo) 18 (2001) 615–622.

[30] S. Ansai, M. Kinoshita, Targeted mutagenesis using CRISPR/Cas system in medaka, Biol. Open 3 (2014) 362–371.

[31] Y. Murakami, R. Futamata, T. Horibe, K. Ueda, M. Kinoshita, CRISPR/Cas9 nickase-mediated efficient and seamless knock-in of lethal genes in the medaka fish

Oryzias latipes, Dev. Growth Differ. 62 (2020) 554–567.

[32] T.W. Loo, M. Claire Bartlett, D.M. Clarke, The “LSGGQ” motif in each nucleotide-binding domain of human P-glycoprotein is adjacent to the opposing Walker A

sequence, J. Biol. Chem. 277 (2002) 41303–41306.

[33] M.L. Oldham, J. Chen, Snapshots of the maltose transporter during ATP hydrolysis, Proc. Natl. Acad. Sci. U.S.A. 108 (2011) 15152–15156.

[34] K. Nagao, Y. Zhao, K. Takahashi, Y. Kimura, K. Ueda, Sodium taurocholate-dependent lipid efflux by ABCA1: effects of W590S mutation on lipid translocation

and apolipoprotein A-I dissociation, J. Lipid Res. 50 (2009) 1165–1172, https://doi.org/10.1194/jlr.M800597-JLR200. Available at:.

[35] T. Iwamatsu, T. Ohta, E. Oshima, N. Sakai, Oogenesis in the medaka orizias latipes -stages of oocyte development, Zool. Sci. (Tokyo) 5 (1988) 353–373.

[36] K. Ogiwara, N. Takano, M. Shinohara, M. Murakami, T. Takahashi, Gelatinase A and membrane-type matrix metalloproteinases 1 and 2 are responsible for

follicle rupture during ovulation in the medaka, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 8442–8447.

[37] T. Takahashi, A. Hagiwara, K. Ogiwara, Follicle rupture during ovulation with an emphasis on recent progress in fish models, Reproduction 157 (2019) R1–R13.

[38] M. Westerterp, E.L. Gautier, A. Ganda, M.M. Molusky, W. Wang, P. Fotakis, N. Wang, G.J. Randolph, V.D. D’Agati, L. Yvan-Charvet, et al., Cholesterol

accumulation in dendritic cells links the inflammasome to acquired immunity, Cell Metabol. 25 (2017) 1294–1304.e6.

[39] S.M.K. Glasauer, S.C.F. Neuhauss, Whole-genome duplication in teleost fishes and its evolutionary consequences, Mol. Genet. Genom. 289 (2014) 1045–1060.

[40] W.E. Connor, P.B. Duell, R. Kean, Y. Wang, The prime role of HDL to transport lutein into the retina: evidence from HDL-deficient WHAM chicks having a

mutant ABCA1 transporter, Investig. Ophthalmol. Vis. Sci. 48 (2007) 4226–4231.

[41] S. Fukada, N. Sakai, S. Adachi, Y. Nagahama, Steroidogenesis in the Ovarian Follicle of Medaka (Oryzias latipes, a daily spawner) during Oocyte Maturation:

oocyte maturation/maturation-inducing hormone/17 α,20β-dihydroxy-4-pregnen-3-one/medaka/teleost, Dev. Growth Differ. 36 (1994) 81–88.

[42] N. Sakai, T. Iwamatsu, K. Yamauchi, N. Suzuki, Y. Nagahama, Influence of follicular development on steroid production in the medaka (Oryzias latipes) ovarian

follicle in response to exogenous substrates, Gen. Comp. Endocrinol. 71 (1988) 516–523.

[43] H.E. Miettinen, H. Rayburn, M. Krieger, Abnormal lipoprotein metabolism and reversible female infertility in HDL receptor (SR-BI)-deficient mice, J. Clin.

Invest. 108 (2001) 1717–1722.

[44] A. Yesilaltay, G.A. Dokshin, D. Busso, L. Wang, D. Galiani, T. Chavarria, E. Vasile, L. Quilaqueo, J.A. Orellana, D. Walzer, et al., Excess cholesterol induces mouse

egg activation and may cause female infertility, Proc. Natl. Acad. Sci. U.S.A. 111 (2014) E4972–E4980.

[45] A. Quiroz, P. Molina, N. Santander, D. Gallardo, A. Rigotti, D. Busso, Ovarian cholesterol efflux: ATP-binding cassette transporters and follicular fluid HDL

regulate cholesterol content in mouse oocytes, Biol. Reprod. 102 (2020) 348–361.

[46] L. S`

edes, L. Thirouard, S. Maqdasy, M. Garcia, F. Caira, J.M.A. Lobaccaro, C. Beaudoin, D.H. Volle, Cholesterol: a gatekeeper of male fertility? Front. Endocrinol.

9 (2018) 1–13.

[47] D.M. Selva, V. Hirsch-Reinshagen, B. Burgess, S. Zhou, J. Chan, S. McIsaac, M.R. Hayden, G.L. Hammond, A.W. Vogl, C.L. Wellington, The ATP-binding cassette

transporter 1 mediates lipid efflux from Sertoli cells and influences male fertility, J. Lipid Res. 45 (2004) 1040–1050.

[48] B. Trigatti, H. Rayburn, M. Vi˜

nals, A. Braun, H. Miettinen, M. Penman, M. Hertz, M. Schrenzel, L. Amigo, A. Rigotti, et al., Influence of the high density

lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology, Proc. Natl. Acad. Sci. U.S.A. 96 (1999) 9322–9327.

[49] L. Stocchi, E. Giardina, L. Varriale, A. Sechi, A. Vagnini, G. Parri, M. Valentini, M. Capalbo, Can Tangier disease cause male infertility? A case report and an

overview on genetic causes of male infertility and hormonal axis involved, Mol. Genet. Metabol. 123 (2018) 43–49, https://doi.org/10.1016/j.

ymgme.2017.11.009. Available at:.

[50] J. Buschiazzo, C. Ialy-Radio, J. Auer, J.P. Wolf, C. Serres, B. Lef`evre, A. Ziyyat, Cholesterol depletion disorganizes oocyte membrane rafts altering mouse

fertilization, PLoS One 8 (2013).

[51] J.F. Oram, A.M. Vaughan, R. Stocker, ATP-Binding cassette transporter A1 mediates cellular secretion of α-tocopherol, J. Biol. Chem. 276 (2001) 39898–39902.

[52] M. Ishigami, F. Ogasawara, K. Nagao, H. Hashimoto, Y. Kimura, N. Kioka, K. Ueda, Temporary sequestration of cholesterol and phosphatidylcholine within

extracellular domains of ABCA1 during nascent HDL generation, Sci. Rep. 8 (2018) 2–11, https://doi.org/10.1038/s41598-018-24428-6. Available at:.

[53] R. Futamata, N. Kioka, K. Ueda, Live cell FRET analysis of the conformational changes of human P-glycoprotein, Bio-protocol 11 (2021) 1–17.

[54] G. Toshima, Y. Iwama, F. Kimura, Y. Matsumoto, M. Miura, LipoSEARCH ® ; Analytical GP-HPLC method for lipoprotein profiling and its applications, J. Biol.

Macromol. 13 (2013) 21–32.

11

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る