リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Thermodynamic Properties of Ni–Dy Intermetallic Compounds Measured Electrochemically in Molten CaCl₂–DyCl₃」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Thermodynamic Properties of Ni–Dy Intermetallic Compounds Measured Electrochemically in Molten CaCl₂–DyCl₃

Hua, Hang Yasuda, Kouji Nohira, Toshiyuki 京都大学 DOI:10.1149/1945-7111/ac2beb

2021.10

概要

The temperature dependence of the coexisting phase potentials of various Nickel–Dysprosium (Ni–Dy) intermetallic compounds in a molten CaCl₂–DyCl₃ (1.0 mol% added) system was determined between 1073 K and 1173 K at 25 K intervals. The coexisting phase potentials of (NiDy + Ni₂Dy), (Ni₂Dy + Ni₃Dy), (Ni₃Dy + Ni₅Dy), and (Ni₅Dy + Ni) were measured via open-circuit potentiometry using a Ni flag electrode. The Dy activities and the Dy relative partial molar Gibbs energies in Ni–Dy intermetallic compounds were calculated from these potentials. Then, the Ni activities and the Ni relative partial molar Gibbs energies were calculated using the Gibbs-Duhem equation. Thereafter, the relative partial molar enthalpies and entropies of Dy and Ni were obtained by comparing the temperature dependence equations of the relative partial molar Gibbs energies. Finally, the relative partial molar Gibbs energies of Dy and Ni were used to calculate the standard Gibbs energies of formation for various Ni–Dy intermetallic compounds and compared with reported values.

この論文で使われている画像

参考文献

The temperature dependence of the coexisting phase potentials for

(NiDy + Ni2Dy), (Ni2Dy + Ni3Dy), (Ni3Dy + Ni5Dy), and (Ni5Dy +

Ni) was investigated in the molten CaCl2 containing 1.0 mol% DyCl3 at

1073–1173 K. The relative partial molar thermodynamic properties and

activities of Dy and Ni were calculated from the coexisting phase

potentials. The values of ΔG¯ Dy and ΔG¯ Ni were used to calculate

ΔGf°(Ni − Dy) for the NiDy, Ni2Dy, Ni3Dy, and Ni5Dy intermetallic

compounds. The obtained ΔGf°(Ni − Dy) values were compared, they

showed good agreement with the reported values by CALPHAD and

other experimental values between 1073 and 1173 K. Both ΔHf°(Ni − Dy)

and ΔSf°(Ni − Dy) were compared with CALPHAD values and the slight

differences may be due to inaccuracy in the potential determinations.

1. J. J. Croat, J. F. Herbst, R. W. Lee, and F. E. Pinkerton, J. Appl. Phys., 55, 2078

(1984).

2. M. Sagawa, S. Hirosawa, H. Yamamoto, S. Fujimura, and Y. Matsuura, Jpn. J.

Appl. Phys., 26, 785 (1987).

3. R. Nakayama, T. Takeshita, M. Itakura, N. Kuwano, and K. Oki, J. Appl. Phys., 70,

3770 (1991).

4. R. E. Cech, J. Metals, 26, 32 (1974).

5. J. J. Rhyne and S. Legvold, Phys. Rev., 138, A507 (1965).

6. K. H. J. Buschow, P. C. P. Bouten, and A. R. Miedema, Rep. Prog. Phys., 45, 937

(1982).

7. P. H. L. Notten and P. Hokkeling, J. Electrochem. Soc., 138, 1877 (1991).

8. G. Jin and H. Li, J. Phys. Chem. Solids, 62, 2055 (2001).

9. J. Greeley, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen,

T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff, and J. K. Nørskov, Nat. Chem., 1,

552 (2009).

10. D. Zubenko, S. Singh, and B. A. Rosen, Appl. Catal., B, 209, 711 (2017).

11. N. Jones, Nature, 472, 22 (2011).

12. J. M. D. Coey, J. Magn. Magn. Mater., 248, 441 (2002).

13. Y. Seo and S. Morimoto, Resour. Policy, 39, 15 (2014).

14. A. Lukowiak, L. Zur, R. Tomala, T. N. LamTran, A. Bouajaj, W. Strek,

G. C. Righini, M. Wickleder, and M. Ferrari, Ceram. Int., 46, 26247 (2020).

15. O. Takeda and T. H. Okabe, Metall. Mater. Trans. E, 1, 160 (2014).

16. G. Adachi, K. Murase, K. Shinozaki, and K. Machida, Chem. Lett., 21, 511 (1992).

17. T. Uda, K. T. Jacob, and M. Hirasawa, Science, 289, 2326 (2000).

18. T. Uda, Mater. Trans., 43, 55 (2002).

19. T. H. Okabe, O. Takeda, K. Fukuda, and Y. Umetsu, Mater. Trans., 44, 798 (2003).

20. T. Saito, H. Sato, S. Ozawa, J. Yu, and T. Motegi, J. Alloy. Compd., 353, 189

(2003).

21. O. Takeda, T. H. Okabe, and Y. Umetsu, J. Alloy. Compd., 379, 305 (2004).

Acknowledgments

This work was partly supported by a Grant-in-Aid for Japan Society

for the Promotion of Science (JSPS) Fellows grant number 19J20301.

ORCID

Hang Hua https://orcid.org/0000-0003-0010-5155

Kouji Yasuda https://orcid.org/0000-0001-5656-5359

Toshiyuki Nohira https://orcid.org/0000-0002-4053-554X

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Journal of The Electrochemical Society, 2021 168 102501

22. M. Itoh, M. Masuda, S. Suzuki, and K.-I. Machida, J. Alloy. Compd., 374, 393

(2004).

23. Y. Xu, L. S. Chumbley, and F. C. Laabs, J. Mater. Res., 15, 2296 (2000).

24. O. Takeda, K. Nakano, and Y. Sato, Mater. Trans., 55, 334 (2014).

25. T. Akahori, Y. Miyamoto, T. Saeki, M. Okamoto, and T. H. Okabe, J. Alloy.

Compd., 703, 337 (2017).

26. S. Shirayama and T. H. Okabe, Metall. Mater. Trans. B, 49, 1067 (2018).

27. T. Nohira, S. Kobayashi, K. Kondo, K. Yasuda, R. Hagiwara, T. Oishi, and

H. Konishi, ECS Trans., 50, 473 (2012).

28. K. Yasuda, K. Kondo, S. Kobayashi, T. Nohira, and R. Hagiwara, J. Electrochem.

Soc., 163, D140 (2016).

29. H. Konishi, H. Ono, T. Nohira, and T. Oishi, ECS Trans., 50, 463 (2012).

30. H. Hua, K. Yasuda, H. Konishi, and T. Nohira, J. Electrochem. Soc., 167, 142504

(2020).

31. H. Hua, K. Yasuda, H. Konishi, and T. Nohira, J. Electrochem. Soc., 168, 032506

(2021).

32. H. Konishi, T. Nishikiori, T. Nohira, and Y. Ito, Electrochim. Acta, 48, 1403

(2003).

33. M. Li and W. Han, Calphad, 33, 517 (2009).

34. K. Nassau, PhD Thesis, University of Pittsburgh (1959), University Microfilms,

Mic.59-6551.

35. J. Schott and F. Sommer, J. Less-Common Met., 119, 307 (1986).

36. Q. Guo and O. J. Kleppa, Metall. Mater. Trans. B, 27B, 417 (1996).

37. H. Okamoto, J. Phase Equilib. Diffus., 35, 105 (2014).

...

参考文献をもっと見る