リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ウルトラファインバブル水の広帯域超音波における減衰係数と気泡数密度測定」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ウルトラファインバブル水の広帯域超音波における減衰係数と気泡数密度測定

赤松, 重則 上田, 義勝 京都大学 DOI:10.3811/jjmf.2022.t003

2022.03.15

概要

Bubbles with a diameter less than 1μm are called ultrafine bubbles (UFB). And UFB is expected to be applied in the environment, agriculture and medical treatment. In this study, we will examine the possibility by using ultrasonic waves and ultrapure water (UPW), also the attenuation characteristics of UFB water, to analyze the properties of UFB. The attenuation characteristics of UFB water in broadband ultrasound waves up to 32.5 MHz were investigated. In the 1.5-2.5 MHz ultrasonic band, the attenuation coefficient in the near-field was relatively close to the theoretical value calculated from the bubble density measurement results. For the 32.5 MHz ultrasound, there was a clear difference in the attenuation coefficient for the bubble density distribution between the UPW and the UFB water. In addition, the change in the number density distribution of bubbles and the change in the attenuation coefficient were observed depending on the elapsed days after UFB generation. It is possible that the change is related to the increase in the bubble diameter of the UFB.

この論文で使われている画像

参考文献

[1] International Organization for Standardization,

Fine Bubble Technology - Characterization of

Microbubbles - Part 1: Off-Line Evaluation of

Size Index, 21910-1 (2020).

[2] Okuda, T., Matsui, K., Hashimoto, K., Ueda, Y.,

Nakai, S. and Nishijima, W., Effect of Ultrafine

Bubble onto Accumulation and Structure of

Urinary Calculus, Japanese Journal of Multiphase

Flow, Vol. 32(1), 12-18 (2018).

[3] Hata, T., Nishiuchi, Y., Tada, K., Okumura, H. and

Akamatsu, S., Fine Bubble Cleaning Technology

for Recycling Society, Japan Society for Design

Engineering, Vol. 52(5), 291-297 (2017).

[4] Sato, T., Ueda, Y., Takahashi, K. and Takaki, K.,

Sterilization and Virus Inactivation by Fine

Bubbles, Japanese Journal of Multiphase Flow,

Vol. 35(2), 251-258 (2021).

[5] Terasaka, K., Himuro, S., Ando, K. and Hata, T.,

Introduction to Fine Bubble Science and

Technology, Nikkan Kogyo Shimbun Ltd., (2016).

[6] Worldwide Malvern Instruments, Nanoscale

Material Characterization: a Review of the Use of

Nanoparticle Tracking Analysis (NTA), ©2017

Malvern Instruments Limited, 6-24 (2017).

[7] Sonoda, A., Measurement of Ultra Fine Bubble

Using Laser Diffraction Method, Journal of the

Society of Powder Technology, Japan, Vol. 54,

590-595 (2017).

[8] Kobayashi, H., Kashiwa, M., Maeda, S.,

Nishihara, I., Fujita, T., Newey-keane, L. and

Fatkin, J., Identification of Ultrafine Bubbles and

Solid Particles by Resonant Mass Measurement

Method Using MEMS Device, The Japanese

Society for Multiphase Flow Symposium 2014,

OS-13, D123 (2014).

[9] Takagawa, S., A Study on Estimation Method of

Bubble Distribution from Acoustic Attenuation

(1st Report: Theoretical Research), Journal of the

Society of Naval Architects of Japan, Vol.

1987(162), 39-49 (1987).

[10] Takagawa, S., A Study on Estimation Method of

Bubble Distribution from Acoustic Attenuation

(2nd Report, Experimental Research), Journal of

the Society of Naval Architects of Japan, Vol.

1988(164), 66-73 (1988).

[11] Ueda, Y., Tokuda, Y., Yoko, T., Takeuchi, K.,

Kolesnikov, A. I. and Koyanaka, H.,

Electrochemical Property of Proton-conductive

Manganese Dioxide for Sensoring Hydrogen Gas

Concentration, Solid State Ionics, Vol. 225, 282285(2012).

[12] Ueda, Y. and Tokuda, Y., Measurement and

Evaluation of the Fine Bubble via Ultrasonic

Wave Attenuation, The Japanese Society for

Multiphase Flow Symposium 2017, OS-11, F122

(2017).

[13] Ueda, Y., Akamatsu, S., Tokuda, Y. and Hata, T.,

Fine Bubble Properties by Using Ultrasonic Wave

Measurement, The Japanese Society for

Multiphase Flow Symposium 2018, OS-11, F113

(2018).

[14] Pinkerton, J. M. M., The Absorption of Ultrasonic

Waves in Liquids and its Relation to Molecular

Constitution, Proc. Phys. Soc., Vol. B62, 129-141

(1949).

[15] Smith, M. C. and Beyer, R. T., Ultrasonic

Absorption in Water in the Temperature Range 080 °C, J. Acoust. Soc. Am., Vol. 20, 608-610

(1948).

[16] Fox, F. E. and Rock, G. D., Ultrasonic Absorption in

Water, J. Acoust. Soc. Am., Vol. 12, 505-510 (1941).

[17] Pancholy, M., Temperature Variation of Velocity

and Absorption Coefficient of Ultrasonic Waves

in Heavy Water (D2O), J. Acoust. Soc. Am., Vol.

25, 1003-1006 (1953).

[18] Kishimoto, T. and Nomoto, O., Absorption of

Ultrasonic Waves in Organic Liquids (II), Journal

of the Physical Society of Japan, Vol. 9(6), 10211029 (1954).

[19] Minnaert, M., On Musical Air-Bubbles and the

Sounds of Running Water, Phil. Mag., Vol. 16,

235-248 (1933).

[20] The Acoustical Society of Japan ed., Acoustic

Bubble and Sonochemistry, 26-32, Corona

Publishing, Tokyo (2012).

[21] Negishi, K. and Takagi, K., Ultrasonic

Technology (in Japanese), University of Tokyo

Press (1984).

混相流 36 巻 1号(2022)

27

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る