リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「An Isoform-Selective Modulator of Cryptochrome 1 Regulates Circadian Rhythms in Mammals」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

An Isoform-Selective Modulator of Cryptochrome 1 Regulates Circadian Rhythms in Mammals

Miller, Simon Aikawa, Yoshiki Sugiyama, Akiko Nagai, Yoshiko Hara, Aya Oshima, Tsuyoshi Amaike, Kazuma Kay, Steve A. Itami, Kenichiro Hirota, Tsuyoshi 名古屋大学

2020.09.17

概要

Cryptochrome 1 (CRY1) and CRY2 are core regulators of the circadian clock, and the development of isoform-selective modulators is important for the elucidation of their redundant and distinct functions. Here, we report the identification and functional characterization of a small-molecule modulator of the mammalian circadian clock that selectively controls CRY1. Cell-based circadian chemical screening identified a thienopyrimidine derivative KL201 that lengthened the period of circadian rhythms in cells and tissues. Functional assays revealed stabilization of CRY1 but not CRY2 by KL201. A structure-activity relationship study of KL201 derivatives in combination with X-ray crystallography of the CRY1-KL201 complex uncovered critical sites and interactions required for CRY1 regulation. KL201 bound to CRY1 in overlap with FBXL3, a subunit of ubiquitin ligase complex, and the effect of KL201 was blunted by knockdown of FBXL3. KL201 will facilitate isoform-selective regulation of CRY1 to accelerate chronobiology research and therapeutics against clock-related diseases.

この論文で使われている画像

参考文献

Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd,

J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a

522

523

comprehensive Python-based system for macromolecular structure solution. Acta

Crystallogr D Biol Crystallogr 66, 213-221.

524

525

526

Battye, T.G., Kontogiannis, L., Johnson, O., Powell, H.R., and Leslie, A.G. (2011).

iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM.

Acta Crystallogr D Biol Crystallogr 67, 271-281.

527

Brautigam, C.A., Smith, B.S., Ma, Z., Palnitkar, M., Tomchick, D.R., Machius, M., and

528

529

Deisenhofer, J. (2004). Structure of the photolyase-like domain of cryptochrome 1 from

Arabidopsis thaliana. Proc Natl Acad Sci U S A 101, 12142-12147.

530

531

532

Chen, Z., Yoo, S.H., and Takahashi, J.S. (2018). Development and Therapeutic

Potential of Small-Molecule Modulators of Circadian Systems. Annu Rev Pharmacol

Toxicol 58, 231-252.

533

534

535

Czarna, A., Berndt, A., Singh, H.R., Grudziecki, A., Ladurner, A.G., Timinszky, G.,

Kramer, A., and Wolf, E. (2013). Structures of Drosophila cryptochrome and mouse

cryptochrome1 provide insight into circadian function. Cell 153, 1394-1405.

536

537

538

Dong, Z., Zhang, G., Qu, M., Gimple, R.C., Wu, Q., Qiu, Z., Prager, B.C., Wang, X.,

Kim, L.J.Y., Morton, A.R., et al. (2019). Targeting Glioblastoma Stem Cells through

Disruption of the Circadian Clock. Cancer Discov 9, 1556-1573.

539

540

Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and

development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486-501.

541

542

Evans, P. (2006). Scaling and assessment of data quality. Acta Crystallogr D Biol

Crystallogr 62, 72-82.

543

544

Hirota, T., and Kay, S.A. (2009). High-throughput screening and chemical biology: new

approaches for understanding circadian clock mechanisms. Chem Biol 16, 921-927.

545

546

Hirota, T., and Kay, S.A. (2015). Identification of small-molecule modulators of the

circadian clock. Methods Enzymol 551, 267-282.

547

548

Hirota, T., Lee, J.W., Lewis, W.G., Zhang, E.E., Breton, G., Liu, X., Garcia, M., Peters,

E.C., Etchegaray, J.P., Traver, D., et al. (2010). High-throughput chemical screen

549

550

identifies a novel potent modulator of cellular circadian rhythms and reveals CKIalpha

as a clock regulatory kinase. PLoS Biol 8, e1000559.

18

551

552

553

Hirota, T., Lee, J.W., St John, P.C., Sawa, M., Iwaisako, K., Noguchi, T., Pongsawakul,

P.Y., Sonntag, T., Welsh, D.K., Brenner, D.A., et al. (2012). Identification of small

molecule activators of cryptochrome. Science 337, 1094-1097.

554

555

556

Huber, A.L., Papp, S.J., Chan, A.B., Henriksson, E., Jordan, S.D., Kriebs, A., Nguyen,

M., Wallace, M., Li, Z., Metallo, C.M., et al. (2016). CRY2 and FBXL3 Cooperatively

Degrade c-MYC. Mol Cell 64, 774-789.

557

558

559

Koike, N., Yoo, S.H., Huang, H.C., Kumar, V., Lee, C., Kim, T.K., and Takahashi, J.S.

(2012). Transcriptional architecture and chromatin landscape of the core circadian

clock in mammals. Science 338, 349-354.

560

Lee, J.W., Hirota, T., Kumar, A., Kim, N.J., Irle, S., and Kay, S.A. (2015). Development

561

562

of Small-Molecule Cryptochrome Stabilizer Derivatives as Modulators of the Circadian

Clock. ChemMedChem 10, 1489-1497.

563

564

565

Lee, J.W., Hirota, T., Peters, E.C., Garcia, M., Gonzalez, R., Cho, C.Y., Wu, X., Schultz,

P.G., and Kay, S.A. (2011). A small molecule modulates circadian rhythms through

phosphorylation of the period protein. Angew Chem Int Ed Engl 50, 10608-10611.

566

567

568

Maul, M.J., Barends, T.R., Glas, A.F., Cryle, M.J., Domratcheva, T., Schneider, S.,

Schlichting, I., and Carell, T. (2008). Crystal structure and mechanism of a DNA (6-4)

photolyase. Angew Chem Int Ed Engl 47, 10076-10080.

569

570

McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and

Read, R.J. (2007). Phaser crystallographic software. J Appl Crystallogr 40, 658-674.

571

572

Miller, S., and Hirota, T. (2020). Pharmacological Interventions to Circadian Clocks and

Their Molecular Bases. J Mol Biol, 10.1016/j.jmb.2020.1001.1003.

573

574

Miller, S., Son, Y.L., Aikawa, Y., Makino, E., Nagai, Y., Srivastava, A., Oshima, T.,

Sugiyama, A., Hara, A., Abe, K., et al. (2020). Isoform-selective regulation of

575

mammalian cryptochromes. Nat Chem Biol, 10.1038/s41589-41020-40505-41581.

576

577

578

Murshudov, G.N., Skubak, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A.,

Winn, M.D., Long, F., and Vagin, A.A. (2011). REFMAC5 for the refinement of

macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67, 355-367.

579

580

581

Nangle, S., Xing, W., and Zheng, N. (2013). Crystal structure of mammalian

cryptochrome in complex with a small molecule competitor of its ubiquitin ligase. Cell

Res 23, 1417-1419.

582

583

Oshima, T., Niwa, Y., Kuwata, K., Srivastava, A., Hyoda, T., Tsuchiya, Y., Kumagai, M.,

Tsuyuguchi, M., Tamaru, T., Sugiyama, A., et al. (2019). Cell-based screen identifies a

19

584

585

new potent and highly selective CK2 inhibitor for modulation of circadian rhythms and

cancer cell growth. Sci Adv 5, eaau9060.

586

587

Oshima, T., Yamanaka, I., Kumar, A., Yamaguchi, J., Nishiwaki-Ohkawa, T., Muto, K.,

Kawamura, R., Hirota, T., Yagita, K., Irle, S., et al. (2015). C-H activation generates

588

589

period-shortening molecules that target cryptochrome in the mammalian circadian

clock. Angew Chem Int Ed Engl 54, 7193-7197.

590

591

592

Patke, A., Murphy, P.J., Onat, O.E., Krieger, A.C., Ozcelik, T., Campbell, S.S., and

Young, M.W. (2017). Mutation of the Human Circadian Clock Gene CRY1 in Familial

Delayed Sleep Phase Disorder. Cell 169, 203-215 e213.

593

594

Takahashi, J.S. (2017). Transcriptional architecture of the mammalian circadian clock.

Nat Rev Genet 18, 164-179.

595

596

597

van der Horst, G.T., Muijtjens, M., Kobayashi, K., Takano, R., Kanno, S., Takao, M., de

Wit, J., Verkerk, A., Eker, A.P., van Leenen, D., et al. (1999). Mammalian Cry1 and

Cry2 are essential for maintenance of circadian rhythms. Nature 398, 627-630.

598

599

600

Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R.,

Keegan, R.M., Krissinel, E.B., Leslie, A.G., McCoy, A., et al. (2011). Overview of the

CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67, 235-242.

601

602

603

Xing, W., Busino, L., Hinds, T.R., Marionni, S.T., Saifee, N.H., Bush, M.F., Pagano, M.,

and Zheng, N. (2013). SCF(FBXL3) ubiquitin ligase targets cryptochromes at their

cofactor pocket. Nature 496, 64-68.

604

605

Yoo, S.H., Yamazaki, S., Lowrey, P.L., Shimomura, K., Ko, C.H., Buhr, E.D., Siepka,

S.M., Hong, H.K., Oh, W.J., Yoo, O.J., et al. (2004). PERIOD2::LUCIFERASE real-time

606

607

reporting of circadian dynamics reveals persistent circadian oscillations in mouse

peripheral tissues. Proc Natl Acad Sci U S A 101, 5339-5346.

608

609

610

Zhang, E.E., Liu, A.C., Hirota, T., Miraglia, L.J., Welch, G., Pongsawakul, P.Y., Liu, X.,

Atwood, A., Huss, J.W., 3rd, Janes, J., et al. (2009). A genome-wide RNAi screen for

modifiers of the circadian clock in human cells. Cell 139, 199-210.

611

612

613

Zhang, E.E., Liu, Y., Dentin, R., Pongsawakul, P.Y., Liu, A.C., Hirota, T., Nusinow, D.A.,

Sun, X., Landais, S., Kodama, Y., et al. (2010). Cryptochrome mediates circadian

regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 16, 1152-1156.

614

20

Figure 1

BMAL1

CLOCK

complex

formation

PER1/2

CRY1/2

repression

activation

PER1/2

Per1/2

CRY1/2

Cry1/2

HN

CRY2

FBXL3

ubiquitination

and

degradation

CRY1

new compound

CRY2

Bmal1-dLuc U2OS

Period

1000

Period change (h)

0 µM

0.9 µM

3 µM

8 µM

1500

Per2-dLuc U2OS

600

400

200

6 Bmal1-dLuc

Per2-dLuc

0 12 24 36 48 60 72 84 96108

Relative

reporter activity

0 12 24 36 48 60 72 84 96108

1.0

0.5

0.0

Time (h)

-9 -8 -7 -6 -5

log[conc] (M)

Per2::Luc lung

0 µM

3 µM

24 µM

8 µM

DMSO

KL201

KL201

24

Conc (µM)

336

312

288

Intensity

Relative

Per2::Luc activity

Period

264

216

Time (h)

192

168

144

96

120

72

48

24

-48

-24

Period change (h)

Relative

luminescence

-9 -8 -7 -6 -5

Intensity

240

Luminescence

500

both CRY1/2

CRY1

Br

KL001

KL201

HO

1.0

0.5

0.0

24

Conc (µM)

Figure 2

1.0

0.5

-5

-7

log[conc] (M)

-6

-5

-5

0.0

1.0

1.0

0.5

0.5

0.0

Cry1

KO

-7

-6

-7

-6

-5

0.5

0.5

0.0

0.0

Cry2

KO

0.0

-5

-7

log[conc] (M)

-6

-5

KL201

0 0.3 0.9 2.7 8

24 µM

WB: anti-Flag

CRY1

WB: anti-HA

CRY2

3 CRY1

CRY2

-6

-5

log[conc] (M)

Cry2 KO

-6

Cry1 KO

-7

Cry1/Cry2

KO

Dbp

1.0

Wild type

0.0

Wild

type

Per2

1.0

Cry1/Cry2 KO

0.5

Relative mRNA levels

0.5

-5.4

Relative intensity

Relative Per2::Luc activity

1.0

-5.2

-5.6

1.0

-5.0

Cry2 KO

-6

-4.8

Cry1 KO

-7

Cry2

KO

NA

NA

-4.6

1.0

0.5

Wild Cry1/Cry2 Cry1

type

KO

KO

Wild type

1.5

CRY2

Cry1/Cry2 KO

2.5 CRY1

2.0 KL201

KL001

1.5

log[EC50] (M)

Relative half-life

Figure 3

HN

HN

R3

R1

R2

Name

R1

R2

log[EC2h] (M)

KL201

TH201

TH202

TH203

TH204

Br

Cl

OMe

Cl

-5.63

-5.26

-4.25

inactive

-4.24

Name

R3

TH205

log[EC2h] (M)

inactive

TH215

inactive

inactive

TH214

HN

TH206

-4.49

HN

HN

R6

R7

R5

Name

R4

R5

log[EC2h] (M)

Name

R6

R7

log[EC2h] (M)

TH207

TH208

TH209

TH210

Br

Cl

Cl

-4.79

-4.74

-4.27

inactive

TH211

TH212

TH213

Cl

Cl

-5.18

-4.66

inactive

size dependent

HN

non-essential

Br

essential

Figure 4

N-term

CRY1-KL201

CRY1-KL201

CRY2-KL001

CRY2-FBXL3

M424

D423

M424

D423

90°

T427

P426

M425

M425

P426

T427

W428

H355

H355

W292

F296

3.0 Å

I392

Q289

S396

W397

R358

F381

CRY1-KL201

W292

W399

F296

L400

F296

H2O

H 2O

I392

A362

A388

L385

W292

H359

H355

36

Hydrophobic Region 1

Hydrophobic Region 2

Affinity Region

W399

H2O

A388

I392

Q289

R358

W397

H355

L400

H359

A362

W397

R358

L385

32

FBXL3 si

28 Control si

24

A388

Br

L385

W399

S396

H355

NH

S396

Bmal1-dLuc

Period (h)

Hydrophobic Region 1

Hydrophobic Region 2

Affinity Region

D203

F381

CRY1-KL201

CRY2-KL001

Per2-dLuc activity

W428

C-term

-7

-6

Per2-dLuc

150

100

50

∞ -7 -6 -5

log[conc] (M)

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る