リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A versatile Tn7 transposon-based bioluminescence tagging tool for quantitative and spatial detection of bacteria in plants」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A versatile Tn7 transposon-based bioluminescence tagging tool for quantitative and spatial detection of bacteria in plants

Matsumoto, Ayumi Schlüter, Titus Melkonian, Katharina Takeda, Atsushi Nakagami, Hirofumi Mine, Akira 京都大学 DOI:10.1016/j.xplc.2021.100227

2022.01.10

概要

Investigation of plant-bacteria interactions requires quantification of in planta bacterial titers by means of cumbersome and time-consuming colony-counting assays. Here, we devised a broadly applicable tool for bioluminescence-based quantitative and spatial detection of bacteria in plants. We developed vectors that enable Tn7 transposon-mediated integration of the luxCDABE luciferase operon into a specific genomic location found ubiquitously across bacterial phyla. These vectors allowed for the generation of bioluminescent transformants of various plant pathogenic bacteria from the genera Pseudomonas, Rhizobium (Agrobacterium), and Ralstonia. Direct luminescence measurements of plant tissues inoculated with bioluminescent Pseudomonas syringae pv. tomato DC3000 (Pto-lux) reported bacterial titers as accurately as conventional colony-counting assays in Arabidopsis thaliana, Solanum lycopersicum, Nicotiana benthamiana, and Marchantia polymorpha. We further showed the usefulness of our vectors in converting previously generated Pto derivatives to isogenic bioluminescent strains. Importantly, quantitative bioluminescence assays using these Pto-lux strains accurately reported the effects of plant immunity and bacterial effectors on bacterial growth, with a dynamic range of four orders of magnitude. Moreover, macroscopic bioluminescence imaging illuminated the spatial patterns of Pto-lux growth in/on inoculated plant tissues. In conclusion, our vectors offer untapped opportunities to develop bioluminescence-based assays for a variety of plant-bacteria interactions.

この論文で使われている画像

参考文献

Althoff, F., Kopischke, S., Zobell, O., Ide, K., Ishizaki, K., Kohchi, T.,

and Zachgo, S. (2014). Comparison of the MpEF1alpha and

CaMV35 promoters for application in Marchantia polymorpha

overexpression studies. Transgenic Res. 23:235–244. https://doi.org/

10.1007/s11248-013-9746-z.

Axtell, M.J., and Staskawicz, B.J. (2003). Initiation of RPS2-specified

disease resistance in Arabidopsis is coupled to the AvrRpt2-directed

elimination of RIN4. Cell 112:369–377. https://doi.org/10.1016/

s0092-8674(03)00036-9.

Bowman, J.L., Kohchi, T., Yamato, K.T., Jenkins, J., Shu, S., Ishizaki,

K., Yamaoka, S., Nishihama, R., Nakamura, Y., Berger, F., et al.

(2017). Insights into land plant evolution garnered from the

Marchantia polymorpha genome. Cell 171:287–304 e215. https://doi.

org/10.1016/j.cell.2017.09.030.

Brooks, D.M., Hernandez-Guzman, G., Kloek, A.P., Alarcon-Chaidez,

F., Sreedharan, A., Rangaswamy, V., Penaloza-Vazquez, A.,

Bender, C.L., and Kunkel, B.N. (2004). Identification and

characterization of a well-defined series of coronatine biosynthetic

mutants of Pseudomonas syringae pv. tomato DC3000. Mol. Plant

Microbe Interact. 17:162–174. https://doi.org/10.1094/MPMI.2004.

17.2.162.

Buschmann, H., Holtmannspotter, M., Borchers, A., O’Donoghue,

M.T., and Zachgo, S. (2016). Microtubule dynamics of the

centrosome-like polar organizers from the basal land plant

Marchantia polymorpha. New Phytol. 209:999–1013. https://doi.org/

10.1111/nph.13691.

Choi, K.H., and Schweizer, H.P. (2006). mini-Tn7 insertion in bacteria

with single attTn7 sites: example Pseudomonas aeruginosa. Nat.

Protoc. 1:153–161. https://doi.org/10.1038/nprot.2006.24.

Choi, K.H., DeShazer, D., and Schweizer, H.P. (2006). mini-Tn7 insertion

in bacteria with multiple glmS-linked attTn7 sites: example

Burkholderia mallei ATCC 23344. Nat. Protoc. 1:162–169. https://doi.

org/10.1038/nprot.2006.25.

Cruz, A.P., Ferreira, V., Pianzzola, M.J., Siri, M.I., Coll, N.S., and Valls,

M. (2014). A novel, sensitive method to evaluate potato germplasm for

bacterial wilt resistance using a luminescent Ralstonia solanacearum

reporter strain. Mol. Plant Microbe Interact. 27:277–285. https://doi.

org/10.1094/MPMI-10-13-0303-FI.

Cui, F., Wu, S., Sun, W., Coaker, G., Kunkel, B., He, P., and Shan, L.

(2013). The Pseudomonas syringae type III effector AvrRpt2

promotes pathogen virulence via stimulating Arabidopsis auxin/

indole acetic acid protein turnover. Plant Physiol. 162:1018–1029.

https://doi.org/10.1104/pp.113.219659.

Cui, H., Tsuda, K., and Parker, J.E. (2015). Effector-triggered

immunity: from pathogen perception to robust defense. Annu. Rev.

Plant Biol. 66:487–511. https://doi.org/10.1146/annurev-arplant050213-040012.

Dou, D., and Zhou, J.M. (2012). Phytopathogen effectors subverting host

immunity: different foes, similar battleground. Cell Host Microbe

12:484–495. https://doi.org/10.1016/j.chom.2012.09.003.

Du, M., Zhai, Q., Deng, L., Li, S., Li, H., Yan, L., Huang, Z., Wang, B.,

Jiang, H., Huang, T., et al. (2014). Closely related NAC transcription

factors of tomato differentially regulate stomatal closure and

reopening during pathogen attack. Plant Cell 26:3167–3184. https://

doi.org/10.1105/tpc.114.128272.

Fan, J., Crooks, C., and Lamb, C. (2008). High-throughput quantitative

luminescence assay of the growth in planta of Pseudomonas

syringae chromosomally tagged with Photorhabdus luminescens

luxCDABE. Plant J. 53:393–399. https://doi.org/10.1111/j.1365-313X.

2007.03303.x.

Geng, X., Shen, M., Kim, J.H., and Mackey, D. (2016). The

Pseudomonas syringae type III effectors AvrRpm1 and AvrRpt2

promote virulence dependent on the F-box protein COI1. Plant Cell

Rep. 35:921–932. https://doi.org/10.1007/s00299-016-1932-z.

Gimenez-Ibanez, S., Zamarreno, A.M., Garcia-Mina, J.M., and Solano,

R. (2019). An evolutionarily ancient immune system governs the

interactions between Pseudomonas syringae and an early-diverging

land plant lineage. Curr. Biol. 29:2270–2281.e4. https://doi.org/10.

1016/j.cub.2019.05.079.

Hacquard, S., Spaepen, S., Garrido-Oter, R., and Schulze-Lefert, P.

(2017). Interplay between innate immunity and the plant microbiota.

Annu. Rev. Phytopathol. 55:565–589. https://doi.org/10.1146/

annurev-phyto-080516-035623.

Hatsugai, N., Iwasaki, S., Tamura, K., Kondo, M., Fuji, K., Ogasawara,

K., Nishimura, M., and Hara-Nishimura, I. (2009). A novel membrane

fusion-mediated plant immunity against bacterial pathogens. Genes

Dev. 23:2496–2506. https://doi.org/10.1101/gad.1825209.

He, P., Shan, L., Lin, N.C., Martin, G.B., Kemmerling, B., Nurnberger,

T., and Sheen, J. (2006). Specific bacterial suppressors of MAMP

signaling upstream of MAPKKK in Arabidopsis innate immunity. Cell

125:563–575. https://doi.org/10.1016/j.cell.2006.02.047.

Hikichi, Y., Nasu-Nakazawa, Y., Kitanosono, S., Suzuki, K., and

Okuno, T. (1999). The behavior of genetically lux-marked Ralstonia

solanacearum in grafted tomato cultivars resistant or susceptible to

bacterial wilt. Ann. Phytopathol. Soc. Jpn. 65:597–603. https://doi.

org/10.3186/jjphytopath.65.597.

Hikichi, Y., Suzuki, K., Toyoda, K., Horikoshi, M., Hirooka, T., and

Okuno, T. (1998). Successive observation of growth and movement

of genetically lux-marked Pseudomonas cichorii and the response of

host tissues in the same lettuce leaf. Ann. Phytopathol. Soc. Jpn.

64:519–525. https://doi.org/10.3186/jjphytopath.64.519.

Honkanen, S., Jones, V.A.S., Morieri, G., Champion, C., Hetherington,

A.J., Kelly, S., Proust, H., Saint-Marcoux, D., Prescott, H., and

Dolan, L. (2016). The mechanism forming the cell surface of tipgrowing rooting cells is conserved among land plants. Curr. Biol.

26:3238–3244. https://doi.org/10.1016/j.cub.2016.09.062.

Plant Communications 3, 100227, January 10 2022 ª 2021 The Authors.

13

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Plant Communications

Howe, K., Karsi, A., Germon, P., Wills, R.W., Lawrence, M.L., and

Bailey, R.H. (2010). Development of stable reporter system cloning

luxCDABE genes into chromosome of Salmonella enterica serotypes

using Tn7 transposon. BMC Microbiol. 10:197. https://doi.org/10.

1186/1471-2180-10-197.

Huchelmann, A., Boutry, M., and Hachez, C. (2017). Plant glandular

trichomes: natural cell factories of high biotechnological interest.

Plant Physiol. 175:6–22. https://doi.org/10.1104/pp.17.00727.

Ishizaki, K., Chiyoda, S., Yamato, K.T., and Kohchi, T. (2008).

Agrobacterium-mediated transformation of the haploid liverwort

Marchantia polymorpha L., an emerging model for plant biology.

Plant Cell Physiol. 49:1084–1091. https://doi.org/10.1093/pcp/

pcn085.

Ishizaki, K., Johzuka-Hisatomi, Y., Ishida, S., Iida, S., and Kohchi, T.

(2013a). Homologous recombination-mediated gene targeting in the

liverwort Marchantia polymorpha L. Sci. Rep. 3:1532. https://doi.org/

10.1038/srep01532.

Ishizaki, K., Mizutani, M., Shimamura, M., Masuda, A., Nishihama, R.,

and Kohchi, T. (2013b). Essential role of the E3 ubiquitin ligase

nopperabo1 in schizogenous intercellular space formation in the

liverwort Marchantia polymorpha. Plant Cell 25:4075–4084. https://

doi.org/10.1105/tpc.113.117051.

Jittawuttipoka, T., Buranajitpakorn, S., Fuangthong, M., Schweizer,

H.P., Vattanaviboon, P., and Mongkolsuk, S. (2009). Mini-Tn7

vectors as genetic tools for gene cloning at a single copy number in

an

industrially

important

and

phytopathogenic

bacteria,

Xanthomonas spp. FEMS Microbiol. Lett. 298:111–117. https://doi.

org/10.1111/j.1574-6968.2009.01707.x.

Kanda, A., Yasukohchi, M., Ohnishi, K., Kiba, A., Okuno, T., and

Hikichi, Y. (2003). Ectopic expression of Ralstonia solanacearum

effector protein PopA early in invasion results in loss of virulence.

Mol. Plant Microbe Interact. 16:447–455. https://doi.org/10.1094/

MPMI.2003.16.5.447.

Kernell Burke, A., Duong, D.A., Jensen, R.V., and Stevens, A.M. (2015).

Analyzing the transcriptomes of two quorum-sensing controlled

transcription factors, RcsA and LrhA, important for Pantoea stewartii

virulence. PLoS One 10:e0145358. https://doi.org/10.1371/journal.

pone.0145358.

Kim, M.G., Geng, X., Lee, S.Y., and Mackey, D. (2009). The

Pseudomonas syringae type III effector AvrRpm1 induces significant

defenses by activating the Arabidopsis nucleotide-binding leucinerich repeat protein RPS2. Plant J. 57:645–653. https://doi.org/10.

1111/j.1365-313X.2008.03716.x.

Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A.,

Roop, R.M., 2nd, and Peterson, K.M. (1995). Four new derivatives

of the broad-host-range cloning vector pBBR1MCS, carrying

different antibiotic-resistance cassettes. Gene 166:175–176. https://

doi.org/10.1016/0378-1119(95)00584-1.

Kova´cs, K., Hill, P.J., Grierson, D., Dodd, C.E.R., Pamfil, D., and Fray,

R.G. (2009). Development of a novel inducible bioluminescent and

antibiotic resistance tagging system and its use to investigate the

role of antibiotic production by Pectobacterium carotovorum ssp.

carotovorum during potato tuber infection. Eur. J. Plant Pathol.

125:655–664. https://doi.org/10.1007/s10658-009-9513-4.

Lin, N.C., and Martin, G.B. (2005). An avrPto/avrPtoB mutant of

Pseudomonas syringae pv. tomato DC3000 does not elicit Ptomediated resistance and is less virulent on tomato. Mol. Plant

Microbe Interact. 18:43–51. https://doi.org/10.1094/MPMI-18-0043.

Liu, M., Durfee, T., Cabrera, J.E., Zhao, K., Jin, D.J., and Blattner, F.R.

(2005). Global transcriptional programs reveal a carbon source

foraging strategy by Escherichia coli. J. Biol. Chem. 280:15921–

15927. https://doi.org/10.1074/jbc.M414050200.

14

Bioluminescence assay for bacteria in plants

Ma, S.-W., Morris, V.L., and Cuppels, D.A. (1991). Characterization of a

DNA region required for production of the phytotoxin coronatine by

Pseudomonas syringae pv. tomato. Mol. Plant Microbe Interact.

4:69–74.

Mackey, D., Holt, B.F., 3rd, Wiig, A., and Dangl, J.L. (2002). RIN4

interacts with Pseudomonas syringae type III effector molecules and

is required for RPM1-mediated resistance in Arabidopsis. Cell

108:743–754. https://doi.org/10.1016/s0092-8674(02)00661-x.

Mackey, D., Belkhadir, Y., Alonso, J.M., Ecker, J.R., and Dangl, J.L.

(2003). Arabidopsis RIN4 is a target of the type III virulence effector

AvrRpt2 and modulates RPS2-mediated resistance. Cell

112:379–389. https://doi.org/10.1016/s0092-8674(03)00040-0.

Meighen, E.A. (1993). Bacterial bioluminescence: organization,

regulation, and application of the lux genes. FASEB J. 7:1016–1022.

https://doi.org/10.1096/fasebj.7.11.8370470.

Melotto, M., Underwood, W., Koczan, J., Nomura, K., and He, S.Y.

(2006). Plant stomata function in innate immunity against bacterial

invasion. Cell 126:969–980. https://doi.org/10.1016/j.cell.2006.06.054.

Mine, A., Seyfferth, C., Kracher, B., Berens, M.L., Becker, D., and

Tsuda, K. (2018). The defense phytohormone signaling network

enables rapid, high-amplitude transcriptional reprogramming during

effector-triggered immunity. Plant Cell 30:1199–1219. https://doi.org/

10.1105/tpc.17.00970.

Mine, A., Berens, M.L., Nobori, T., Anver, S., Fukumoto, K.,

Winkelmuller, T.M., Takeda, A., Becker, D., and Tsuda, K. (2017).

Pathogen exploitation of an abscisic acid- and jasmonate-inducible

MAPK phosphatase and its interception by Arabidopsis immunity.

Proc. Natl. Acad. Sci. U S A 114:7456–7461. https://doi.org/10.1073/

pnas.1702613114.

Okada, S., Fujisawa, M., Sone, T., Nakayama, S., Nishiyama, R.,

Takenaka, M., Yamaoka, S., Sakaida, M., Kono, K., Takahama,

M., et al. (2000). Construction of male and female PAC genomic

libraries suitable for identification of Y-chromosome-specific clones

from the liverwort, Marchantia polymorpha. Plant J. 24:421–428.

https://doi.org/10.1046/j.1365-313x.2000.00882.x.

Park, J.Y., Lee, Y.H., Yang, K.Y., and Kim, Y.C. (2010). AiiA-mediated

quorum quenching does not affect virulence or toxoflavin expression

in Burkholderia glumae SL2376. Lett. Appl. Microbiol. 51:619–624.

https://doi.org/10.1111/j.1472-765X.2010.02940.x.

Peng, J., Schachterle, J.K., and Sundin, G.W. (2021). Orchestration of

virulence factor expression and modulation of biofilm dispersal in

Erwinia amylovora through activation of the Hfq-dependent small

RNA RprA. Mol. Plant Pathol. 22:255–270. https://doi.org/10.1111/

mpp.13024.

Peters, J.E., and Craig, N.L. (2001). Tn7: smarter than we thought. Nat.

Rev. Mol. Cell Biol. 2:806–814. https://doi.org/10.1038/35099006.

Pfeilmeier, S., Caly, D.L., and Malone, J.G. (2016). Bacterial

pathogenesis of plants: future challenges from a microbial

perspective: challenges in bacterial molecular plant pathology. Mol.

Plant Pathol. 17:1298–1313. https://doi.org/10.1111/mpp.12427.

Planas-Marques, M., Kressin, J.P., Kashyap, A., Panthee, D.R.,

Louws, F.J., Coll, N.S., and Valls, M. (2020). Four bottlenecks

restrict colonization and invasion by the pathogen Ralstonia

solanacearum in resistant tomato. J. Exp. Bot. 71:2157–2171. https://

doi.org/10.1093/jxb/erz562.

Soldan, R., Nattapong, S., Marcel, B.-P., Indra, B., Huang, Wei E., and

Preston, Gail M. (2021). From macro to micro: a combined

bioluminescence-fluorescence approach to monitor bacterial

localization. Environmental Microbiology 23 (4):2070–2085. https://

doi.org/10.1111/1462-2920.15296.

Romani, F., Banic, E., Florent, S.N., Kanazawa, T., Goodger, J.Q.D.,

Mentink, R.A., Dierschke, T., Zachgo, S., Ueda, T., Bowman, J.L.,

Plant Communications 3, 100227, January 10 2022 ª 2021 The Authors.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Plant Communications

Bioluminescence assay for bacteria in plants

et al. (2020). Oil body formation in Marchantia polymorpha is controlled

by MpC1HDZ and serves as a defense against arthropod herbivores.

Curr. Biol. 30:2815–2828.e8. https://doi.org/10.1016/j.cub.2020.05.

081.

Romero-Jimenez, L., Rodriguez-Carbonell, D., Gallegos, M.T.,

Sanjuan, J., and Perez-Mendoza, D. (2015). Mini-Tn7 vectors for

stable expression of diguanylate cyclase PleD* in Gram-negative

bacteria. BMC Microbiol. 15:190. https://doi.org/10.1186/s12866015-0521-6.

Sichwart, S., Hetzler, S., Broker, D., and Steinbuchel, A. (2011).

Extension of the substrate utilization range of Ralstonia eutropha

strain H16 by metabolic engineering to include mannose and

glucose. Appl. Environ. Microbiol. 77:1325–1334. https://doi.org/10.

1128/AEM.01977-10.

leaves. Ann. Phytopathol. Soc. Jpn. 65:93–99. https://doi.org/10.3186/

jjphytopath.65.470.

Wei, C.-F., Kvitko, B.H., Shimizu, R., Crabill, E., Alfano, J.R., Lin, N.-C.,

Martin, G.B., Huang, H.-C., and Collmer, A. (2007). A Pseudomonas

syringae pv. tomato DC3000 mutant lacking the type III effector

HopQ1-1 is able to cause disease in the model plant Nicotiana

benthamiana. Plant J. 51:32–46. https://doi.org/10.1111/j.1365-313X.

2007.03126.x.

Wiles, T.J., Wall, E.S., Schlomann, B.H., Hay, E.A., Parthasarathy, R.,

and Guillemin, K. (2018). Modernized tools for streamlined genetic

manipulation and comparative study of wild and diverse

proteobacterial lineages. mBio 9. https://doi.org/10.1128/mBio.

01877-18.

Song, C., and Yang, B. (2010). Mutagenesis of 18 type III effectors reveals

virulence function of XopZ(PXO99) in Xanthomonas oryzae pv. oryzae.

Mol. Plant Microbe Interact. 23:893–902. https://doi.org/10.1094/

MPMI-23-7-0893.

Xi, C., Lambrecht, M., Vanderleyden, J., and Michiels, J. (1999). Bifunctional gfp- and gusA-containing mini-Tn5 transposon derivatives

for combined gene expression and bacterial localization studies. J.

Microbiol.

Methods

35:85–92.

https://doi.org/10.1016/s01677012(98)00103-1.

Staskawicz, B., Dahlbeck, D., Keen, N., and Napoli, C. (1987).

Molecular characterization of cloned avirulence genes from race

0 and race 1 of Pseudomonas syringae pv. glycinea. J. Bacteriol.

169:5789–5794. https://doi.org/10.1128/jb.169.12.5789-5794.1987.

Xin, X.F., Kvitko, B., and He, S.Y. (2018). Pseudomonas syringae: what it

takes to be a pathogen. Nat. Rev. Microbiol. 16:316–328. https://doi.

org/10.1038/nrmicro.2018.17.

Sugano, S.S., Shirakawa, M., Takagi, J., Matsuda, Y., Shimada, T.,

Hara-Nishimura, I., and Kohchi, T. (2014). CRISPR/Cas9-mediated

targeted mutagenesis in the liverwort Marchantia polymorpha L.

Plant Cell Physiol. 55:475–481. https://doi.org/10.1093/pcp/pcu014.

Szpirer, C.Y., Faelen, M., and Couturier, M. (2001). Mobilization function

of the pBHR1 plasmid, a derivative of the broad-host-range plasmid

pBBR1. J. Bacteriol. 183:2101–2110. https://doi.org/10.1128/JB.183.

6.2101-2110.2001.

Tsuda, K., Sato, M., Stoddard, T., Glazebrook, J., and Katagiri, F.

(2009). Network properties of robust immunity in plants. PLoS Genet.

5:e1000772. https://doi.org/10.1371/journal.pgen.1000772.

Tsuge, S., Ikawa, Y., Hikichi, Y., Nakazawa-Nasu, Y., Suzuki, K., Kubo,

Y., and Horino, O. (1999). Behavior of bioluminescent transconjugants

of Xanthomonas oryzae pv. oryzae in compatible and incompatible rice

Yamaoka, S., Nishihama, R., Yoshitake, Y., Ishida, S., Inoue, K., Saito,

M., Okahashi, K., Bao, H., Nishida, H., Yamaguchi, K., et al. (2018).

Generative cell specification requires transcription factors

evolutionarily conserved in land plants. Curr. Biol. 28:479–486.e5.

https://doi.org/10.1016/j.cub.2017.12.053.

Yuan, J., and He, S.Y. (1996). The Pseudomonas syringae Hrp regulation

and secretion system controls the production and secretion of multiple

extracellular proteins. J. Bacteriol. 178:6399–6402. https://doi.org/10.

1128/jb.178.21.6399-6402.1996.

Zhang, Y., Cao, Y., Zhang, L., Ohnishi, K., Hikichi, Y., and Li, J. (2021).

The Tn7-based genomic integration is dependent on an attTn7 box in

the glms gene and is site-specific with monocopy in Ralstonia

solanacearum species complex. Mol. Plant Microbe Interact. https://

doi.org/10.1094/MPMI-11-20-0325-SC.

Plant Communications 3, 100227, January 10 2022 ª 2021 The Authors.

15

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る