リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Rapid and Mild Lactamization Using Highly Electrophilic Triphosgene in a Microflow Reactor」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Rapid and Mild Lactamization Using Highly Electrophilic Triphosgene in a Microflow Reactor

Fuse, Shinichiro Komuro, Keiji Otake, Yuma Masui, Hisashi Nakamura, Hiroyuki 名古屋大学

2021.05.12

概要

Lactams are cyclic amides that are indispensable as drugs and as drug candidates. Conventional lactamization includes acidmediated approaches and coupling agent-mediated approaches that suffer from a narrow substrate scope, much waste, and/or high cost. Inexpensive, less wasteful and highly electrophilic reagent-mediated approaches are attractive, but there is an imminent risk of side reactions. Herein, we describe methods using highly electrophilic triphosgene in a micro-flow reactor that accomplish lactamization that are rapid (0.5-10 sec), mild, inexpensive, and less wasteful. We developed two methods, referred to here as A and B, using NMM and NMI, respectively. Various lactams as well as a cyclic peptide containing acid- and/or heat-labile functional groups were synthesized in good to high yields without the need for tedious purifications. Undesired reactions were successfully suppressed and the risk in handling triphosgene was minimized by the use of micro-flow technology.

この論文で使われている画像

参考文献

[1] P. Ertl, E. Altmann, J. M. McKenna, J. Med. Chem. 2020, 63, 8408-8418.

[2] R. D. Taylor, M. MacCoss, A. D. Lawson, J. Med. Chem. 2014, 57, 5845-5859.

[3] a) S. Knapp, A. T. Levorse, J. Org. Chem. 1988, 53, 4006- 4014; b) R. Göttlich, in Catalysis from A to Z, 2020.

[4] a) R. E. Gawley, in Organic Reactions, 2004, pp. 1-420; b) S. Xu, H. Arimoto, D. Uemura, Angew. Chem. Int. Ed. 2007, 46, 5746-5749.

[5] a) E. Nyfeler, P. Renaud, CHIMIA 2006, 60, 276-284; b) S. Lang, J. A. Murphy, Chem. Soc. Rev. 2006, 35, 146-156.

[6] M. Kinugasa, S. Hashimoto, J. Chem. Soc., Chem. Commun. 1972, 466-467.

[7] Base-mediated approaches and microwave-assisted approaches have been also reported. These approaches are also suffer from hash reaction conditions (high temperature and long time). See: a) J. Caruano, G. G. Muccioli, R. Robiette, Org. Biomol. Chem. 2016, 14, 10134–10156; b) T. D. Phi, H. Doan Thi Mai, V. H. Tran, B. N. Truong, T. A. Tran, V. L. Vu, V. M. Chau, V. C. Pham, Med. Chem. Commun. 2017, 8, 445–451 and references therein.

[8] a) M. Mader, P. Helquist, Tetrahedron Lett. 1988, 29, 3049- 3052; b) M. Arkhipova, S. Eichel, G. Maas, RSC Adv. 2014, 4, 56506-56517.

[9] a) A. Burkhart, H. Ritter, Beilstein J. Org. Chem. 2014, 10, 1951-1958; b) A. Bladé-Font, Tetrahedron Lett. 1980, 21, 2443-2446.

[10] R. M. Lanigan, P. Starkov, T. D. Sheppard, J. Org. Chem. 2013, 78, 4512-4523.

[11] K. Ishihara, S. Ohara, H. Yamamoto, J. Org. Chem. 1996, 61, 4196-4197.

[12] K. Steliou, A. Szczygielska-Nowosielska, A. Favre, M. A. Poupart, S. Hanessian, J. Am. Chem. Soc. 1980, 102, 7578-7579.

[13] Y. Yamamoto, T. Furuta, Chem. Lett. 1989, 18, 797-800.

[14] F. de Azambuja, T. N. Parac-Vogt, ACS Catal. 2019, 9, 10245-10252.

[15] V. Radha Rani, N. Srinivas, S. J. Kulkarni, K. V. Raghavan, J. Mol. Catal. A: Chem. 2002, 187, 237-246.

[16] a) R. De Wachter, L. Brans, S. Ballet, I. Van den Eynde, D. Feytens, A. Keresztes, G. Toth, Z. Urbanczyk-Lipkowska, D. Tourwé, Tetrahedron 2009, 65, 2266-2278; b) J. M. Andrés, N. de Elena, R. Pedrosa, A. Pérez-Encabo, Tetrahedron: Asymmetry 2001, 12, 1503-1509.

[17] a) G. Forcher, A. Silvanus, P. de Frémont, B. Jacques, M. S. M. Pearson-Long, F. Boeda, P. Bertus, J. Organomet. Chem. 2015, 797, 1-7; b) O. Srinivas, P. Larrieu, E. Duverger, M.-T. Bousser, M. Monsigny, J.-F. Fonteneau, F. Jotereau, A.-C. Roche, Bioconjugate Chem. 2007, 18, 1547-1554.

[18] a) W.-c. Chang, Y. Guo, C. Wang, S. E. Butch, A. C. Rosenzweig, A. K. Boal, C. Krebs, J. M. Bollinger, Science 2014, 343, 1140; b) C. R. Zwick, H. Renata, J. Org. Chem. 2018, 83, 7407-7415.

[19] Recent selected reviews for continuous-flow synthesis, see: a) S. Kobayashi, Chem. Asian J. 2016, 11, 425-436; b) J. Britton, C. L. Raston, Chem. Soc. Rev. 2017, 46, 1250- 1271; c) M. B. Plutschack, B. Pieber, K. Gilmore, P. H. Seeberger, Chem. Rev. 2017, 117, 11796-11893; d) F. Fanelli, G. Parisi, L. Degennaro, R. Luisi, Beilstein J. Org. Chem. 2017, 13, 520-542; e) C. A. Shukla, A. A. Kulkarni, Beilstein J. Org. Chem. 2017, 13, 960-987; f) R. Gérardy, N. Emmanuel, T. Toupy, V.-E. Kassin, N. N. Tshibalonza, M. Schmitz, J.-C. M. Monbaliu, Eur. J. Org. Chem. 2018, 2018, 2301-2351; g) B. T. Ramanjaneyulu, N. K. Vishwakarma, S. Vidyacharan, P. R. Adiyala, D.-P. Kim, Bull. Korean Chem. Soc. 2018, 39, 757-772; h) L. Rogers, K. F. Jensen, Green Chem. 2019, 21, 3481-3498; i) C. Mateos, M. J. Nieves-Remacha, J. A. Rincón, React. Chem. Eng. 2019, 4, 1536-1544; j) V. R. L. J. Bloemendal, M. A. C. H. Janssen, J. C. M. van Hest, F. P. J. T. Rutjes, React. Chem. Eng. 2020, 5, 1186-1197; k) D. L. Hughes, Org. Process Res. Dev. 2020, 24, 1850-1860; l) M. Baumann, T. S. Moody, M. Smyth, S. Wharry, Org. Process Res. Dev. 2020, 24, 1802-1813; m) M. Baumann, T. S. Moody, M. Smyth, S. Wharry, Eur. J. Org. Chem. 2020, 2020, 7398- 7406; n) M. Guidi, P. H. Seeberger, K. Gilmore, Chem. Soc. Rev. 2020, 49, 8910-8932.

[20] a) B. Gutmann, D. Cantillo, C. O. Kappe, Angew. Chem. Int. Ed. 2015, 54, 6688-6728; b) M. Movsisyan, E. I. P. Delbeke, J. K. E. T. Berton, C. Battilocchio, S. V. Ley, C. V. Stevens, Chem. Soc. Rev. 2016, 45, 4892-4928; c) N. Kockmann, P. Thenée, C. Fleischer-Trebes, G. Laudadio, T. Noël, React. Chem. Eng. 2017, 2, 258-280.

[21] N. G. Anderson, Org. Process Res. Dev. 2012, 16, 852-869.

[22] a) J.-i. Yoshida, Flash Chemistry - Fast Organic Synthesis in Micro Systems, WILEY-VCH, Weinheim, 2008; b) J.-i. Yoshida, A. Nagaki, T. Yamada, Chem. Eur. J. 2008, 14, 7450-7459; c) J.-i. Yoshida, Chem. Rec. 2010, 10, 332-341; d) J.-i. Yoshida, Y. Takahashi, A. Nagaki, Chem. Commun. 2013, 49, 9896-9904.

[23] a) M. Colella, A. Nagaki, R. Luisi, Chem. Eur. J. 2020, 26, 19-32; b) M. Power, E. Alcock, G. P. McGlacken, Org. Process Res. Dev. 2020, 24, 1814-1838.

[24] a) S. Fuse, N. Tanabe, T. Takahashi, Chem. Commun. 2011, 47, 12661-12663; b) S. Fuse, Y. Mifune, T. Takahashi, Angew. Chem. Int. Ed. 2014, 53, 851-855; c) S. Fuse, Y. Mifune, H. Nakamura, H. Tanaka, Nat. Commun. 2016, 7, 13491; d) Y. Mifune, H. Nakamura, S. Fuse, Org. Biomol. Chem. 2016, 14, 11244-11249; e) Y. Otake, H. Nakamura, S. Fuse, Angew. Chem. Int. Ed. 2018, 57, 11389-11393; f) Y. Otake, H. Nakamura, S. Fuse, Angew. Chem. Int. Ed. 2018, 57, 11389-11393; g) S. Fuse, K. Masuda, Y. Otake, H. Nakamura, Chem. Eur. J. 2019, 25, FULL PAPER 8 15091-15097; h) N. Sugisawa, Y. Otake, H. Nakamura, S. Fuse, Chem. Asian J. 2020, 15, 79-84; i) N. Sugisawa, H. Nakamura, S. Fuse, Chem. Commun. 2020, 56, 4527- 4530; j) Y. Otake, Y. Shibata, Y. Hayashi, K. Susumu, N. Hiroyuki, S. Fuse, Angew. Chem. Int. Ed. 2020, 59, 12925- 12930.

[25] S. Fuse, Y. Otake, H. Nakamura, Chem. Asian J. 2018, 13, 3818-3832.

[26] a) F. Albericio, J. M. Bofill, A. El-Faham, S. A. Kates, J. Org. Chem. 1998, 63, 9678-9683; b) A. El-Faham, F. Albericio, Chem. Rev. 2011, 111, 6557-6602; c) F. Albericio, A. ElFaham, Org. Process Res. Dev. 2018, 22, 760-772.

[27] Rapid mixing of organic-aqueous biphasic solution was required at the first mixer, therefore, the V-shaped mixer was used to avoid the undesired reaction. We previously reported better mixing of the V-shaped mixer compared with that of the T-shaped mixer. See ref. [24e].

[28] M. L. Bender, B. W. Turnquest, J. Am. Chem. Soc. 1957, 79, 1656-1662.

[29] H. K. Hall, J. Phys. Chem. 1956, 60, 63-70.

[30] H. K. Hall, J. Am. Chem. Soc. 1957, 79, 5441-5444.

[31] C. Faltin, E. M. Fleming, S. J. Connon, J. Org. Chem. 2004, 69, 6496-6499.

[32] F. Ravalico, S. L. James, J. S. Vyle, Green Chem. 2011, 13, 1778-1783.

[33] Amounts of NMM and triphosgene, concentrations, temperatures were optimized. For details, see Supporting Information.

[34] Amounts of NMI and triphosgene, and reaction times were optimized. For details, see Supporting Information.

[35] M. A. Dechantsreiter, E. Planker, B. Mathä, E. Lohof, G. Hölzemann, A. Jonczyk, S. L. Goodman, H. Kessler, J. Med. Chem. 1999, 42, 3033-3040.

[36] Reviews for continuous-flow peptide synthesis, see: a) S. Ramesh, P. Cherkupally, B. G. de la Torre, T. Govender, H. G. Kruger, F. Albericio, Amino Acids 2014, 46, 2091-2104; b) N. Ahmed, Chem. Biol. Drug. Des. 2018, 91, 647-650; c) S. Fuse, Y. Otake, H. Nakamura, Chem. Asian J. 2018, 13, 3818-3832; d) C. P. Gordon, Org. Biomol. Chem. 2018, 16, 180-196; Continuous-flow cyclic peptide synthesis, see: e) D. Lücke, T. Dalton, S. V. Ley, Z. E. Wilson, Chem. Eur. J. 2016, 22, 4206-4217; f) N. Ollivier, T. Toupy, R. C. Hartkoorn, R. Desmet, J.-C. M. Monbaliu, O. Melnyk, Nat. Commun. 2018, 9, 2847; g) T. Ohara, M. Kaneda, T. Saito, N. Fujii, H. Ohno, S. Oishi, Bioorg. Med. Chem. Lett. 2018, 28, 1283-1286.

[37] A. I. Fernández-Llamazares, J. Adan, F. Mitjans, J. Spengler, F. Albericio, Bioconjugate Chem. 2014, 25, 11- 17; In 2010, Albericio and coworkers also reported macrolactamization for protected cilengitide (88% yield) using PyBOP or PyAOP and HOAt in DMF/DCM under high dilution (0.05 mM) conditions (our conditions: 3.3 mM). Detailed reaction conditions (a coupling agent, amounts, temperature, time) are not described: T. Cupido, J. Spengler, J. Ruiz-Rodriguez, J. Adan, F. Mitjans, J. Piulats, F. Albericio, Angew. Chem. Int. Ed. 2010, 49, 2732-2737.

[38] J. O. Goldsmith, S. Lee, I. Zambidis, L. C. Kuo, J. Biol. Chem. 1991, 266, 18626-18634.

[39] M. Abe, T. Akiyama, H. Nakamura, F. Kojima, S. Harada, Y. Muraoka, J. Nat. Prod. 2004, 67, 999-1004.

[40] M. Abe, T. Akiyama, Y. Umezawa, K. Yamamoto, M. Nagai, H. Yamazaki, Y.-i. Ichikawa, Y. Muraoka, Bioorg. Med. Chem. 2005, 13, 785-797.

[41] L. U. Nordstrøm, H. Vogt, R. Madsen, J. Am. Chem. Soc. 2008, 130, 17672-17673.

[42] a) G. M. Wall, J. K. Baker, J. Med. Chem. 1989, 32, 1340- 1348; b) S. J. P. Yoon-Miller, S. M. Opalka, E. T. Pelkey, Tetrahedron Lett. 2007, 48, 827-830.

[43] X. Peng, H.-H. Wang, F. Cao, H.-H. Zhang, Y.-M. Lu, X.-L. Hu, W. Tan, Z. Wang, Org. Chem. Front. 2019, 6, 1837- 1841.

[44] W. R. Ewing, M. R. Becker, V. E. Manetta, R. S. Davis, H. W. Pauls, H. Mason, Y. M. Choi-Sledeski, D. Green, D. Cha, A. P. Spada, D. L. Cheney, J. S. Mason, S. Maignan, J.-P. Guilloteau, K. Brown, D. Colussi, R. Bentley, J. Bostwick, C. J. Kasiewski, S. R. Morgan, R. J. Leadley, C. T. Dunwiddie, M. H. Perrone, V. Chu, J. Med. Chem. 1999, 42, 3557-3571.

[45] S. C. Ghosh, S. Muthaiah, Y. Zhang, X. Xu, S. H. Hong, Adv. Synth. Catal. 2009, 351, 2643-2649.

[46] K. Y. Koltunov, G. K. S. Prakash, G. Rasul, G. A. Olah, J. Org. Chem. 2002, 67, 8943-8951.

[47] C. F. Hammer, S. Chandrasegaran, J. Am. Chem. Soc. 1984, 106, 1543-1552.

[48] a) M. Sayes, A. B. Charette, Green Chem. 2017, 19, 5060- 5064; b) K. L. Yu, G. Rajakumar, L. K. Srivastava, R. K. Mishra, R. L. Johnson, J. Med. Chem. 1988, 31, 1430-1436.

[49] J. Xu, Y. Gao, Z. Li, J. Liu, T. Guo, L. Zhang, H. Wang, Z. Zhang, K. Guo, Eur. J. Org. Chem. 2020, 2020, 311-315.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る