リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「High-Pressure Synthesis, Crystal Structures and Physical Properties of A-Site Columnar-Ordered Quadruple Perovskites」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

High-Pressure Synthesis, Crystal Structures and Physical Properties of A-Site Columnar-Ordered Quadruple Perovskites

Liu, Ran 北海道大学

2021.12.24

概要

Perovskite material is very popular in inorganic and solid-state chemistry areas for decades. Depending on the correlated phenomena involving spin, charge, and orbital degrees of freedom of unpaired electrons, the crystal structure, physical and chemical properties -thermoelectric, electrochemical, catalytic, and multiferroic- are complex but attractive. The general chem- ical formula of perovskite is ABO3, such as CaTiO3, while more complicated compositions like A’A3B4O12 and A2A’A”B4O12 are also reported for many perovskites. This study has used rare earth, transition metal, and alkaline metal oxides to create new perovskite-based materials. The crystal structures, magnetic properties, and physical properties have been investigated.

Chapter 1 introduces the general background including the structure, magnetism, and appli- cation.

Chapter 2 presents the outline of experimental techniques used in this study.

Chapter 3 introduces the perovskite Y2MnGa(Mn4−xGax)O12 synthesized at high pres- sure and high-temperature conditions. Synchrotron X-ray and neutron powder diffrac- tion were used to study the crystal structures and cation distributions. The solutions adopt the structure type of the A-site columnar-ordered quadruple perovskite family with the space group of P 42/nmc. The x = 0 compound has a cation distribution of [Y3+]A[Mn3+]A′ [Ga3+ Mn2+ ]A′′ [Mn3.68Ga0.32]BO12 with a preferred localization of Ga3+ in 2 0.68 0.32 the tetrahedral A” site and with a small amount of Ga3+ in the octahedral B site. A com-plete triple A-site order,[Y3+]A[Mn3+]A′ [Ga3+]A′′ [Mn3+ Ga3+x]BO12, is realized for x ≧ 1.2 4−x All samples demonstrated spin-glass-like magnetic properties at low temperatures. First- principles calculations indicated the spin-glass-like magnetic ordering is derived from the Ga substitution to the B sites and gave evidence that the ideal cation distribution could produce robust ferromagnetism in this family of perovskites.

Chapter 4 presents R2MnMn(MnTi3)O12 oxides, belonging to a family of A-site columnar- ordered quadruple perovskites. They were synthesized by a high-pressure and high- temperature method for R = Nd, Eu, and Gd at about 6 GPa and 1570 K. At room temper- ature they crystallize in centrosymmetric space group P 42/nmc, and their crystal structures were studied by synchrotron powder X-ray diffraction. They exhibit broad dielectric anoma- lies below room temperature with characteristic frequency-dependent features of the relaxor ferroelectric behavior. P − E loop measurements at 77 K confirmed ferroelectricity for R = Nd and Eu. Magnetic and specific heat measurements showed the presence of long-range ferrimagnetic transitions below 20 K (R = Nd), 30 K (R = Eu), and 42 K (R = Gd). Addi- tional specific heat anomalies were observed below about 5 K for R = Nd and Gd probably due to the involvement of rare-earth cations in long-range orderings. The coexistence of ferrimagnetic transitions and relaxor-like ferroelectric properties make R2MnMn(MnTi3)O12 perovskites multiferroic materials.

Chapter 5 introduces NaRMn2Ti4O12 compounds (R = Sm, Eu, Gd, Dy, Ho, and Y) synthe- sized under high pressure (about 6 GPa) and high temperature (about 1750 K) conditions. The compounds adopt an A-site columnar-ordered quadruple-perovskite structure with the generic chemical formula A2A’A”B4O12. Their crystal structures were studied by powder synchrotron X-ray and neutron diffraction at temperatures between 1.5 and 300 K. Those maintain a paraelectric structure with centrosymmetric space group P 42/nmc at all tem- peratures, in comparison with the related CaMnTi2O6 perovskite, in which a ferroelectric transition occurs at 630 K. The centrosymmetric structure was also confirmed by second- harmonic generation. It has a cation distribution of [Na+R3+]A[Mn2+]A′ [Mn2+]A′′ [Ti4+]BO12 (to match with the generic chemical formula) with statistical distributions of Na+ and R3+ at the large A site and a strongly split position of Mn2+ at the square-planar A’ site. We found a C-type long-range antiferromagnetic structure of Mn2+ ions at the A’ and A” sites below TN = 12 K for R = Dy. All compounds show large dielectric constants of a possible extrinsic origin similar to that of CaCu3Ti4O12. NaRMn2Ti4O12 with R = Er–Lu crystallized in the GdFeO3-type Pnma perovskite structure, and NaRMn2Ti4O12 with R = La, Nd contained two perovskite phases: an AA’3B4O12-type Im3 phase and a GdFeO3-type Pnma phase.

Chapter 6 presents the general conclusion and future prospects based on this study.

この論文で使われている画像

参考文献

1. Giaquinta, D. M.; Zur Loye, H.-C., Structural predictions in the ABO3 phase diagram. Chem. Mater. 1994, 6 (4), 365-372.

2. Mitchell, R. H., Perovskites: modern and ancient. Almaz Press Thunder Bay, 2002, Ontario, Canada.

3. King, G.; Woodward, P. M., Cation ordering in perovskites. J. Mater. Chem. 2010, 20 (28), 5785-5796.

4. Belik, A. A., Rise of A-site columnar-ordered A2A′A′′B4O12 quadruple perovskites with intrinsic triple order. Dalton Transactions 2018, 47 (10), 3209-3217.

5. Goldschmidt, V. M., Die gesetze der krystallochemie. Naturwissenschaften 1926, 14 (21), 477-485.

6. Glazer, A.; Ahtee, M.; Megaw, H., Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1975, 31,756-762

7. Vasil’ev, A.; Volkova, O., New functional materials AC3B4O12. Low Temperature Physics 2007, 33 (11), 895-914.

8. Yamada, I., High-pressure synthesis, electronic states, and structure–property relationships of perovskite oxides, ACu3Fe4O12 (A: divalent alkaline earth or trivalent rare-earth ion). J. Ceram. Soc. Jpn. 2014, 122 (1430), 846-851.

9. Leinenweber, K.; Linton, J.; Navrotsky, A.; Fei, Y.; Parise, J., High-pressure perovskites on the join CaTiO3-FeTiO3. Phys. Chem. Miner. 1995, 22 (4), 251-258.

10. Linton, J.; Navrotsky, A.; Fei, Y., The Thermodynamics of Ordered Perovskites on the CaTiO3-FeTiO3 Join. Phys. Chem. Miner. 1998, 25 (8), 591-596.

11. Ovsyannikov, S. V.; Zainulin, Y. G.; Kadyrova, N. I.; Tyutyunnik, A. P.; Semenova, A. S.; Kasinathan, D.; Tsirlin, A. A.; Miyajima, N.; Karkin, A. E., New antiferromagnetic perovskite CaCo3V4O12 prepared at high-pressure and high- temperature conditions. Inorg. Chem. 2013, 52 (20), 11703-11710.

12. Shiro, K.; Yamada, I.; Ikeda, N.; Ohgushi, K.; Mizumaki, M.; Takahashi, R.; Nishiyama, N.; Inoue, T.; Irifune, T., Pd2+-Incorporated Perovskite CaPd3B4O12(B= Ti, V). Inorg. Chem. 2013, 52 (3), 1604-1609.

13. Sakai, Y.; Yang, J.; Yu, R.; Hojo, H.; Yamada, I.; Miao, P.; Lee, S.; Torii, S.; Kamiyama, T.; Lezaic, M., A-Site and B-site Charge Orderings in an s–d Level Controlled Perovskite Oxide PbCoO3. J. Am. Chem. Soc. 2017, 139 (12), 4574-4581.

14. Shimura, G.; Shirako, Y.; Niwa, K.; Hasegawa, M., High-pressure synthesis and relationship between A-site ordering and local structure of multicomponent perovskites (Ln0.25Mn0.75)(Al0.25Ti0.75)O3, Ln= La, Pr, Nd, Sm, Gd, Tb, Dy, Y. J. Solid State Chem. 2016, 242, 55-62.

15. Deschanvres, A.; Raveau, B.; Tollemer, F., Substitution of copper for a divalent metal in perovskite-type titanates. Bull. Soc. Chim. Fr 1967, 11, 4077-4078.

16. Belik, A. A.; Matsushita, Y.; Khalyavin, D. D., Reentrant structural transitions and collapse of charge and orbital orders in quadruple perovskites. Angew. Chem. Int. Ed. 2017, 56 (35), 10423-10427.

17. Yamada, I., Novel catalytic properties of quadruple perovskites. Science and Technology of advanced MaTerialS 2017, 18 (1), 541-548.

18. Shimura, G.; Niwa, K.; Shirako, Y.; Hasegawa, M., High‐Pressure Synthesis and Magnetic Behavior of A ‐ Site Columnar ‐ Ordered Double Perovskites, LnMn (Ga0.5Ti0.5)2O6 (Ln= Sm, Gd). Eur. J. Inorg. Chem. 2017, 2017 (4), 835-839.

19. Leinenweber, K.; Parise, J., High-pressure synthesis and crystal structure of CaFeTi2O6, a new perovskite structure type. J. Solid State Chem. 1995, 114 (1), 277-281.

20. Yao, N.; Navrotsky, A.; Keinenweber, K., Convergent Beam Electron Diffraction and High Resolution Electron Microscopy of CaFeTi2O6 Perovskite. J. Solid State Chem. 1996, 123 (1), 73-82.

21. Liu, R.; Tanaka, M.; Mori, H.; Inaguma, Y.; Yamaura, K.; Belik, A. A., Ferrimagnetic and relaxor ferroelectric properties of R2MnMn(MnTi3)O12 perovskites with R= Nd, Eu, and Gd. J. Mater. Chem. C 2021, 9 (3), 947-956.

22. Solana‐Madruga, E.; Arqvalo‐López, Á. M.; Dos Santos‐Garcja, A. J.; Urones‐Garrote, E.; Ávila‐Brande, D.; Sáez‐Puche, R.; Attfield, J. P., Double Double Cation Order in the High‐Pressure Perovskites MnRMnSbO6. Angew. Chem. Int. Ed. 2016, 55 (32), 9340-9344.

23. Zhang, L.; Matsushita, Y.; Yamaura, K.; Belik, A. A., Five-Fold Ordering in High- Pressure Perovskites RMn3O6 (R= Gd–Tm and Y). Inorg. Chem. 2017, 56 (9), 5210-5218.

24. McNally, G. M.; Arévalo-López, Á. M.; Kearins, P.; Orlandi, F.; Manuel, P.; Attfield, J. P., Complex Ferrimagnetism and Magnetoresistance Switching in Ca-Based Double Double and Triple Double Perovskites. Chem. Mater. 2017, 29 (20), 8870-8874.

25. Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M.; Grimes, R., Advanced inorganic chemistry. Wiley New York: 1988; Vol. 6.

26. O'handley, R. C., Modern magnetic materials: principles and applications. Wiley: 2000.

27. West, A. R., Solid state chemistry and its applications. John Wiley & Sons: 2014.

28. Miller, A., Landolt-bornstein: Numerical data and functional relationships in science and technology. Optica Acta: International Journal of Optics 1985, 32 (5), 507-508.

29. Koshibae, W.; Kawamura, Y.; Ishihara, S.; Okamoto, S.; Inoue, J.-i.; Maekawa, S., Interplay of spin and orbital orderings in perovskite manganites. J. Phys. Soc. Jpn. 1997, 66 (4), 957-960.

30. Kittle, C., Introduction to Solid State Physics, John Willey and Sons Inc., UK. 2005.

31. Miessler G. L and T. D.A., Inorganic Chemistry. 2004: Pearson Education.

32. Tokura, Y. and N. Nagaosa, Orbital physics in transition-metal oxides. Science, 2000. 288(5465), 462-468.

33. Vallin, J. T.; Watkins, G. D., The Jahn-teller effect for Cr2+ in II–VI crystals. Solid State Commun. 1971, 9 (13), 953-956.

34. Alonso, J.; Martinez-Lope, M.; Casais, M.; Fernandez-Diaz, M., Evolution of the Jahn− Teller distortion of MnO6 octahedra in RMnO3 perovskites (R= Pr, Nd, Dy, Tb, Ho, Er, Y): a neutron diffraction study. Inorg. Chem. 2000, 39 (5), 917-923.

35. Lufaso, M. W.; Gemmill, W. R.; Mugavero III, S. J.; Kim, S.-J.; Lee, Y.; Vogt, T.; zur Loye, H.-C., Synthesis, structure, magnetic properties and structural distortion under high pressure of a new osmate, Sr2CuOsO6. J. Solid State Chem. 2008, 181 (3), 623- 627.

36. Attfield, M.; Battle, P.; Bollen, S.; Kim, S.; Powell, A.; Workman, M., Structural and electrical studies of mixed copper/ruthenium oxides and related compounds of zinc and antimony. J. Solid State Chem. 1992, 96 (2), 344-359.

37. Tokura, Y.; Nagaosa, N., Orbital physics in transition-metal oxides. Science 2000, 288 (5465), 462-468.

38. Rodríguez, E.; López, M. L.; Campo, J.; Veiga, M. L.; Pico, C., Crystal and magnetic structure of the perovskites La2MTiO6 (M= Co, Ni). J. Mater. Chem. 2002, 12 (9), 2798-2802.

39. Baettig, P.; Seshadri, R.; Spaldin, N. A., Anti-polarity in ideal BiMnO3. J. Am. Chem. Soc. 2007, 129 (32), 9854-9855.

40. Azuma, M.; Carlsson, S.; Rodgers, J.; Tucker, M. G.; Tsujimoto, M.; Ishiwata, S.; Isoda, S.; Shimakawa, Y.; Takano, M.; Attfield, J. P., Pressure-induced intermetallic valence transition in BiNiO3. J. Am. Chem. Soc. 2007, 129 (46), 14433-14436.

41. Viola, M. d. C.; Martinez-Lope, M.; Alonso, J.; Velasco, P.; Martinez, J.; Pedregosa, J.; Carbonio, R.; Fernández-Díaz, M., Induction of colossal magnetoresistance in the double perovskite Sr2CoMoO6. Chem. Mater. 2002, 14 (2), 812-818.

42. Liao, Y., Practical electron microscopy and database. An Online Book 2006.

43. Blundell, S., Magnetism in condensed matter: oxford master series. Condensed Matter Physics (Oxford Series Publications, 2001) 2001, 29.

44. Kittel, C.; McEuen, P.; McEuen, P., Introduction to solid state physics. Wiley New York: 1996; Vol. 8.

45. Panigrahi, P.; Araujo, C. M.; Hussen, T.; Ahuja, R., Crafting ferromagnetism in Mn- doped MgO surfaces with p-type defects. Science and technology of advanced materials 2014.

46. Bhaskar, A.; Liu, C.-J.; Yuan, J.; Chang, C.-L., Thermoelectric properties of n-type Ca1−xBixMn1−ySiyO3−δ (x= y= 0.00, 0.02, 0.03, 0.04, and 0.05) system. J. Alloys Compd. 2013, 552, 236-239.

47. Raveau, B.; Zhao, Y.; Martin, C.; Hervieu, M.; Maignan, A., Mn-site doped CaMnO3: creation of the CMR effect. J. Solid State Chem. 2000, 149 (1), 203-207.

48. Shannon, R., Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976.

49. Waroquiers, D.; Gonze, X.; Rignanese, G.-M.; Welker-Nieuwoudt, C.; Rosowski, F.; Göbel, M.; Schenk, S.; Degelmann, P.; André, R.; Glaum, R., Statistical analysis of coordination environments in oxides. Chem. Mater. 2017, 29 (19), 8346-8360.

50. Subramanian, M.; Li, D.; Duan, N.; Reisner, B.; Sleight, A., High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 2000, 151 (2), 323-325.

51. Byeon, S.-H.; Lufaso, M. W.; Parise, J. B.; Woodward, P. M.; Hansen, T., High- pressure synthesis and characterization of perovskites with simultaneous ordering of both the A-and B-site cations, CaCu3Ga2M2O12 (M= Sb, Ta). Chem. Mater. 2003, 15 (20), 3798-3804.

52. Saito, T.; Yamada, R.; Ritter, C.; Senn, M. S.; Attfield, J. P.; Shimakawa, Y., Control of L-type ferrimagnetism by the Ce/vacancy ordering in the A-site-ordered perovskite Ce1/2Cu3Ti4O12. Inorg. Chem. 2014, 53 (3), 1578-1584.

53. Sato, M.; Hama, Y., Structure of new perovskite-related compounds, LiCuM3O9(M= Nb, Ta). J. Mater. Chem. 1993, 3 (3), 233-236.

54. Yamada, I.; Murakami, M.; Hayashi, N.; Mori, S., Inverse charge transfer in the Quadruple Perovskite CaCu3Fe4O12. Inorg. Chem. 2016, 55 (4), 1715-1719.

55. Glazkova, Y. S.; Terada, N.; Matsushita, Y.; Katsuya, Y.; Tanaka, M.; Sobolev, A. V.; Presniakov, I. A.; Belik, A. A., High-pressure synthesis, crystal structures, and properties of CdMn7O12 and SrMn7O12 perovskites. Inorg. Chem. 2015, 54 (18), 9081-9091.

56. Belik, A. A.; Glazkova, Y. S.; Katsuya, Y.; Tanaka, M.; Sobolev, A. V.; Presniakov, I. A., Low-Temperature Structural Modulations in CdMn7O12, CaMn7O12, SrMn7O12, and PbMn7O12 Perovskites Studied by Synchrotron X-ray Powder Diffraction and Mossbauer Spectroscopy. The Journal of Physical Chemistry C 2016, 120 (15), 8278-8288.

57. Matsubara, M.; Manz, S.; Mochizuki, M.; Kubacka, T.; Iyama, A.; Aliouane, N.; Kimura, T.; Johnson, S. L.; Meier, D.; Fiebig, M. Magnetoelectric domain control in multiferroic TbMnO3. Science 2015, 348, 1112-1115.

58. Prodi, A.; Gilioli, E.; Cabassi, R.; Bolzoni, F.; Licci, F.; Huang, Q.; Lynn, J. W.; Affronte, M.; Gauzzi, A.; Marezio, M. Magnetic structure of the high-density single-valent eg Jahn-Teller system LaMn7O12. Phys. Rev. B 2009, 79, 085105.

59. Itoh, M.; Wang, R.; Inaguma, Y.; Yamaguchi, T.; Shan, Y.; Nakamura, T., Ferroelectricity induced by oxygen isotope exchange in strontium titanate perovskite. Phys. Rev. Lett. 1999, 82 (17), 3540.

60. Jang, H.; Kumar, A.; Denev, S.; Biegalski, M. D.; Maksymovych, P.; Bark, C.; Nelson, C. T.; Folkman, C.; Baek, S. H.; Balke, N., Ferroelectricity in strain-free SrTiO3 thin films. Phys. Rev. Lett. 2010, 104 (19), 197601.

61. Taniguchi, H.; Shan, Y. J.; Mori, H.; Itoh, M., Critical soft-mode dynamics and unusual anticrossing in CdTiO3 studied by Raman scattering. Phys. Rev. B 2007, 76 (21), 212103.

62. W.-T. Chen, C.-W. Wang, H.-C. Wu, F.-C. Chou, H.-D. Yang, A. Simonov and M. S. Senn, Improper ferroelectric polarization in a perovskite driven by intersite charge transfer and ordering, Phys. Rev. B: Condens. Matter Mater. Phys., 2018, 97, 144102.

63. A. A. Belik, Y. S. Glazkova, Y. Katsuya, M. Tanaka, A. V. Sobolev and I. A. Presniakov, Low-temperature structural modulations in CdMn7O12, CaMn7O12, SrMn7O12, and PbMn7O12 perovskites studied by synchrotron X-ray powder diffraction and Mossbauer spectroscopy, J. Phys. Chem. C, 2016, 120, 8278–8288.

64. Belik, A. A., Rise of A-site columnar-ordered A2A′A′′B4O12 quadruple perovskites with intrinsic triple order. Dalton Transactions 2018, 47 (10), 3209-3217.

65. Aimi, A.; Mori, D.; Hiraki, K.-i.; Takahashi, T.; Shan, Y. J.; Shirako, Y.; Zhou, J.; Inaguma, Y., High-Pressure Synthesis of A-Site Ordered Double Perovskite CaMnTi2O6 and Ferroelectricity Driven by Coupling of A-Site Ordering and the Second-Order Jahn–Teller Effect. Chem. Mater. 2014, 26 (8), 2601-2608.

66. Li, Z.; Cho, Y.; Li, X.; Li, X.; Aimi, A.; Inaguma, Y.; Alonso, J. A.; Fernandez-Diaz, M. T.; Yan, J.; Downer, M. C., New Mechanism for Ferroelectricity in the Perovskite Ca2–xMnxTi2O6 Synthesized by Spark Plasma Sintering. J. Am. Chem. Soc. 2018, 140 (6), 2214-2220.

67. Zhang, L.; Matsushita, Y.; Yamaura, K.; Belik, A. A., Five-Fold Ordering in High- Pressure Perovskites RMn3O6(R= Gd–Tm and Y). Inorg. Chem. 2017, 56 (9), 5210-5218.

68. Vibhakar, A.; Khalyavin, D.; Manuel, P.; Zhang, L.; Yamaura, K.; Radaelli, P.; Belik, A.; Johnson, R., Magnetic structure and spin-flop transition in the A-site columnar- ordered quadruple perovskite TmMn3O6. Phys. Rev. B 2019, 99 (10), 104424.

69. A. M. Vibhakar , D. D. Khalyavin, P. Manuel, J. Liu, A. A. Belik and R. D. Johnson, Spontaneous rotation of ferrimagnetism driven by antiferromagnetic spin canting, Phys. Rev. Lett., 2020, 124, 127201.

70. A. A. Belik, L. Zhang, R. Liu, D. D. Khalyavin, Y. Katsuya, M. Tanaka and K. Yamaura, Valence variations by B-site doping in A-site columnar-ordered quadruple perovskites Sm2MnMn(Mn4-xTix)O12 with 1 ≤ x ≤ 3, Inorg. Chem., 2019, 58, 3492–3501.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る