リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Activation of the β-adrenergic receptor exacerbates lipopolysaccharide-induced wasting of skeletal muscle cells by increasing interleukin-6 production」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Activation of the β-adrenergic receptor exacerbates lipopolysaccharide-induced wasting of skeletal muscle cells by increasing interleukin-6 production

Matsukawa, Shino 京都大学 DOI:10.14989/doctor.k23468

2021.09.24

概要

骨格筋には主にβアドレナリン受容体(βAR)が発現しており、エピネフリン(Epi)などのカテコラミンは骨格筋量に影響を与えることが報告されている。カテコラミンは敗血症患者などにおいて頻用されるが、全身性炎症下でカテコラミンが骨格筋量に与える影響は明らかでない。本研究では、マウス筋芽細胞であるC2C12 細胞を用いて、敗血症の病原因子であるリポ多糖(LPS)により惹起される筋萎縮に対するEpi の作用を検討した。

イムノブロット法と免疫染色法により、LPS はミオシン蛋白発現量と筋管径を減少させ ること、Epi 単独投与では有意な変化は生じないが、Epi は LPS の作用を増強することが示され、Epi はLPS 存在下で筋萎縮を増悪させることが明らかになった。

次に、Epi が LPS による筋萎縮を増悪させる機序について検討した。LPS による筋萎縮には骨格筋蛋白分解経路であるユビキチン・プロテアソーム系経路(UPP)活性化が関与することが知られている。UPP に属する遺伝子Atrogin-1 の発現をqRT-PCR で解析すると、 LPS はAtrogin-1 発現を誘導し、Epi はLPS による Atrogin-1 発現誘導を増強することが明らかになり、Epi はUPP 活性化による蛋白分解を介してLPS による筋萎縮を増悪させることが示唆された。STAT3 経路活性化は筋萎縮に深く関わり、STAT3 はC/EBPδ発現を誘導して Atrogin-1 発現を増加させることが報告されている。そこで、STAT3 リン酸化及び C/EBPδ発現をイムノブロット法で解析すると、Epi 及びLPS はSTAT3 をリン酸化すること、 LPS はC/EBPδ発現を誘導すること、Epi はLPS によるC/EBPδ発現誘導をさらに増加させることが明らかになった。この結果は、Epi はSTAT3-C/EBPδ経路を介して UPP を活性化することを示唆している。Interleukin-6(IL-6)は様々なストレスに反応して骨格筋細胞から分泌されてSTAT3 経路を活性化させることが知られているので、Epi のSTAT3 活性化作用と LPS による筋萎縮を増強する作用に骨格筋細胞由来 IL-6 が関与する可能性について検討した。Epi はLPS 投与下でIL-6 分泌を増加させ、IL-6 受容体阻害薬LMT-28 は、 LPS 存在下におけるEpi によるSTAT3 リン酸化、C/EBPδ及びAtrogin-1 発現増加を抑制し、 Epi がLPS による筋萎縮を増強する作用には骨格筋細胞から分泌されるIL-6 が関与すると考えられた。LPS による筋萎縮にはNF-κB 活性が関わることが報告されているが、ELISA法による解析ではLPS はNF-κB 活性を増加させる一方、Epi はNF-κB 活性に影響しなかった。また、NF-κB 活性化阻害薬 Bay 11-7082 は、Epi および LPS による C/EBPδ及び Atrogin-1 発現誘導を完全に抑制した。この結果は、LPS による筋萎縮はNF-κB 活性化を介すること、Epi の筋萎縮増強効果にはNF-κB 活性化の存在が必要であることを示唆している。

LPS 存在下における Epi による IL-6 産生、Atrogin-1 誘導、ミオシン蛋白発現抑制はβ AR 拮抗薬carvedilol により抑制された。

以上の結果は、Epi は骨格筋細胞βAR を介してIL-6 分泌とSTAT3 経路活性化を惹起し、 LPS によるNF-κB−C/EBPδ-Atrogin-1 経路活性化を介する筋萎縮を増強させることを示 唆している。

この論文で使われている画像

参考文献

1. Lynch GS, Ryall JG. Role of beta-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease. Physiol Rev. 2008; 88(2):729–67. Epub 2008/04/09. https://doi.org/10.1152/ physrev.00028.2007 PMID:18391178.

2. Beitzel F, Gregorevic P, Ryall JG, Plant DR, Sillence MN, Lynch GS. Beta2-adrenoceptor agonist feno- terol enhances functional repair of regenerating rat skeletal muscle after injury. J Appl Physiol (1985). 2004; 96(4):1385–92. Epub 2003/11/11. https://doi.org/10.1152/japplphysiol.01081.2003 PMID:14607853.

3. Dickerson RN, Fried RC, Bailey PM, Stein TP, Mullen JL, Buzby GP. Effect of propranolol on nitrogen and energy metabolism in sepsis. J Surg Res. 1990; 48(1):38–41. Epub 1990/01/01. https://doi.org/10. 1016/0022-4804(90)90142-o PMID: 2104945.

4. de Montmollin E, Aboab J, Mansart A, Annane D. Bench-to-bedside review: Beta-adrenergic modula- tion in sepsis. Crit Care. 2009; 13(5):230. Epub 2009/10/30. https://doi.org/10.1186/cc8026 PMID: 19863760; PubMed Central PMCID: PMC2784350.

5. Wolfe KS, Patel BK, MacKenzie EL, Giovanni SP, Pohlman AS, Churpek MM, et al. Impact of Vasoac- tive Medications on ICU-Acquired Weakness in Mechanically Ventilated Patients. Chest. 2018; 154 (4):781–7. Epub 2018/09/16. https://doi.org/10.1016/j.chest.2018.07.016 PMID: 30217640; PubMed Central PMCID: PMC6689081.

6. Bloch S, Polkey MI, Griffiths M, Kemp P. Molecular mechanisms of intensive care unit-acquired weak- ness. Eur Respir J. 2012; 39(4):1000–11. Epub 2011/10/04. https://doi.org/10.1183/09031936. 00090011 PMID: 21965224.

7. Schefold JC, Bierbrauer J, Weber-Carstens S. Intensive care unit-acquired weakness (ICUAW) and muscle wasting in critically ill patients with severe sepsis and septic shock. J Cachexia Sarcopenia Mus- cle. 2010; 1(2):147–57. Epub 2011/04/09. https://doi.org/10.1007/s13539-010-0010-6 PMID: 21475702; PubMed Central PMCID: PMC3060654.

8. Callahan LA, Supinski GS. Sepsis-induced myopathy. Crit Care Med. 2009; 37(10 Suppl):S354–67. Epub 2010/02/06. https://doi.org/10.1097/CCM.0b013e3181b6e439 PMID: 20046121; PubMed Central PMCID: PMC3967515.

9. Chai J, Wu Y, Sheng ZZ. Role of ubiquitin-proteasome pathway in skeletal muscle wasting in rats with endotoxemia. Crit Care Med. 2003; 31(6):1802–7. Epub 2003/06/10. https://doi.org/10.1097/01.CCM. 0000069728.49939.E4 PMID: 12794423.

10. Doyle A, Zhang G, Abdel Fattah EA, Eissa NT, Li YP. Toll-like receptor 4 mediates lipopolysaccharide- induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. FASEB J. 2011; 25(1):99–110. Epub 2010/09/10. https://doi.org/10.1096/fj.10-164152 PMID: 20826541; PubMed Central PMCID: PMC3005430.

11. Bodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atro- gin-1. Am J Physiol Endocrinol Metab. 2014; 307(6):E469–84. Epub 2014/08/07. https://doi.org/10. 1152/ajpendo.00204.2014 PMID: 25096180; PubMed Central PMCID: PMC4166716.

12. Sala D, Sacco A. Signal transducer and activator of transcription 3 signaling as a potential target to treat muscle wasting diseases. Curr Opin Clin Nutr Metab Care. 2016; 19(3):171–6. Epub 2016/03/30. https://doi.org/10.1097/MCO.0000000000000273 PMID: 27023048; PubMed Central PMCID: PMC4866604.

13. Silva KA, Dong J, Dong Y, Dong Y, Schor N, Tweardy DJ, et al. Inhibition of Stat3 activation suppresses caspase-3 and the ubiquitin-proteasome system, leading to preservation of muscle mass in cancer cachexia. J Biol Chem. 2015; 290(17):11177–87. Epub 2015/03/20. https://doi.org/10.1074/jbc.M115. 641514 PMID: 25787076; PubMed Central PMCID: PMC4409274.

14. Balamurugan K, Sterneck E. The many faces of C/EBPdelta and their relevance for inflammation and cancer. Int J Biol Sci. 2013; 9(9):917–33. Epub 2013/10/25. https://doi.org/10.7150/ijbs.7224 PMID: 24155666; PubMed Central PMCID: PMC3805898.

15. Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Phy- siol Rev. 2008; 88(4):1379–406. Epub 2008/10/17. https://doi.org/10.1152/physrev.90100.2007 PMID: 18923185.

16. Schulte W, Bernhagen J, Bucala R. Cytokines in sepsis: potent immunoregulators and potential thera- peutic targets—an updated view. Mediators Inflamm. 2013; 2013:165974. Epub 2013/07/16. https://doi. org/10.1155/2013/165974 PMID: 23853427; PubMed Central PMCID: PMC3703895.

17. van Hees HW, Schellekens WJ, Linkels M, Leenders F, Zoll J, Donders R, et al. Plasma from septic shock patients induces loss of muscle protein. Crit Care. 2011; 15(5):R233. Epub 2011/10/01. https:// doi.org/10.1186/cc10475 PMID: 21958504; PubMed Central PMCID: PMC3334781.

18. Zhou J, Liu B, Liang C, Li Y, Song YH. Cytokine Signaling in Skeletal Muscle Wasting. Trends Endocri- nol Metab. 2016; 27(5):335–47. Epub 2016/03/31. https://doi.org/10.1016/j.tem.2016.03.002 PMID: 27025788.

19. Tanaka T, Wakamatsu T, Daijo H, Oda S, Kai S, Adachi T, et al. Persisting mild hypothermia sup- presses hypoxia-inducible factor-1alpha protein synthesis and hypoxia-inducible factor-1-mediated gene expression. Am J Physiol Regul Integr Comp Physiol. 2010; 298(3):R661–71. Epub 2010/01/01. https://doi.org/10.1152/ajpregu.00732.2009 PMID: 20042684.

20. Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell. 2007; 11(5):407–20. Epub 2007/05/08. https://doi.org/10.1016/j.ccr.2007.04.001 PMID: 17482131.

21. Sneddon AA, Delday MI, Steven J, Maltin CA. Elevated IGF-II mRNA and phosphorylation of 4E-BP1 and p70(S6k) in muscle showing clenbuterol-induced anabolism. Am J Physiol Endocrinol Metab. 2001; 281(4):E676–82. Epub 2001/09/12. https://doi.org/10.1152/ajpendo.2001.281.4.E676 PMID:11551843.

22. Bonetto A, Aydogdu T, Jin X, Zhang Z, Zhan R, Puzis L, et al. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am J Physiol Endo- crinol Metab. 2012; 303(3):E410–21. Epub 2012/06/07. https://doi.org/10.1152/ajpendo.00039.2012 PMID: 22669242; PubMed Central PMCID: PMC3423125.

23. Belizario JE, Fontes-Oliveira CC, Borges JP, Kashiabara JA, Vannier E. Skeletal muscle wasting and renewal: a pivotal role of myokine IL-6. Springerplus. 2016; 5:619. Epub 2016/06/23. https://doi.org/10. 1186/s40064-016-2197-2 PMID: 27330885; PubMed Central PMCID: PMC4870483.

24. Hong SS, Choi JH, Lee SY, Park YH, Park KY, Lee JY, et al. A Novel Small-Molecule Inhibitor Targeting the IL-6 Receptor beta Subunit, Glycoprotein 130. J Immunol. 2015; 195(1):237–45. Epub 2015/05/31. https://doi.org/10.4049/jimmunol.1402908 PMID: 26026064.

25. Li H, Malhotra S, Kumar A. Nuclear factor-kappa B signaling in skeletal muscle atrophy. J Mol Med (Berl). 2008; 86(10):1113–26. Epub 2008/06/25. https://doi.org/10.1007/s00109-008-0373-8 PMID: 18574572; PubMed Central PMCID: PMC2597184.

26. Welc SS, Clanton TL. The regulation of interleukin-6 implicates skeletal muscle as an integrative stress sensor and endocrine organ. Exp Physiol. 2013; 98(2):359–71. Epub 2012/09/04. https://doi.org/10. 1113/expphysiol.2012.068189 PMID: 22941979; PubMed Central PMCID: PMC5538267.

27. Bonetto A, Aydogdu T, Kunzevitzky N, Guttridge DC, Khuri S, Koniaris LG, et al. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PLoS One. 2011; 6(7):e22538. Epub 2011/07/30. https://doi.org/10.1371/journal.pone.0022538 PMID: 21799891; PubMed Central PMCID: PMC3140523.

28. Zhang L, Pan J, Dong Y, Tweardy DJ, Dong Y, Garibotto G, et al. Stat3 activation links a C/EBPdelta to myostatin pathway to stimulate loss of muscle mass. Cell Metab. 2013; 18(3):368–79. Epub 2013/09/10. https://doi.org/10.1016/j.cmet.2013.07.012 PMID: 24011072; PubMed Central PMCID: PMC3794464.

29. Baltgalvis KA, Berger FG, Pena MM, Davis JM, White JP, Carson JA. Muscle wasting and interleukin-6- induced atrogin-I expression in the cachectic Apc (Min/+) mouse. Pflugers Arch. 2009; 457(5):989– 1001. Epub 2008/08/21. https://doi.org/10.1007/s00424-008-0574-6 PMID: 18712412; PubMed Central PMCID: PMC2867110.

30. Yakabe M, Ogawa S, Ota H, Iijima K, Eto M, Ouchi Y, et al. Inhibition of interleukin-6 decreases atro- gene expression and ameliorates tail suspension-induced skeletal muscle atrophy. PLoS One. 2018; 13(1):e0191318. Epub 2018/01/20. https://doi.org/10.1371/journal.pone.0191318 PMID: 29351340; PubMed Central PMCID: PMC5774788.

31. Haddad F, Zaldivar F, Cooper DM, Adams GR. IL-6-induced skeletal muscle atrophy. J Appl Physiol (1985). 2005; 98(3):911–7. Epub 2004/11/16. https://doi.org/10.1152/japplphysiol.01026.2004 PMID:15542570.

32. Munoz-Canoves P, Scheele C, Pedersen BK, Serrano AL. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J. 2013; 280(17):4131–48. Epub 2013/05/15. https://doi.org/10. 1111/febs.12338 PMID: 23663276; PubMed Central PMCID: PMC4163639.

33. Serrano AL, Baeza-Raja B, Perdiguero E, Jardi M, Munoz-Canoves P. Interleukin-6 is an essential reg- ulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 2008; 7(1):33–44. Epub 2008/ 01/08. https://doi.org/10.1016/j.cmet.2007.11.011 PMID: 18177723.

34. Londhe P, Guttridge DC. Inflammation induced loss of skeletal muscle. Bone. 2015; 80:131–42. Epub 2015/10/11. https://doi.org/10.1016/j.bone.2015.03.015 PMID: 26453502; PubMed Central PMCID: PMC4600538.

35. Frost RA, Nystrom GJ, Lang CH. Lipopolysaccharide regulates proinflammatory cytokine expression in mouse myoblasts and skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2002; 283(3):R698– 709. Epub 2002/08/20. https://doi.org/10.1152/ajpregu.00039.2002 PMID: 12185005.

36. Penner G, Gang G, Sun X, Wray C, Hasselgren PO. C/EBP DNA-binding activity is upregulated by a glucocorticoid-dependent mechanism in septic muscle. Am J Physiol Regul Integr Comp Physiol. 2002; 282(2):R439–44. Epub 2002/01/17. https://doi.org/10.1152/ajpregu.00512.2001 PMID: 11792653.

37. Cai D, Frantz JD, Tawa NE Jr., Melendez PA, Oh BC, Lidov HG, et al. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell. 2004; 119(2):285–98. Epub 2004/10/14. https://doi.org/10. 1016/j.cell.2004.09.027 PMID: 15479644.

38. Goldstein I, Paakinaho V, Baek S, Sung MH, Hager GL. Synergistic gene expression during the acute phase response is characterized by transcription factor assisted loading. Nat Commun. 2017; 8 (1):1849. Epub 2017/12/01. https://doi.org/10.1038/s41467-017-02055-5 PMID: 29185442; PubMed Central PMCID: PMC5707366.

39. Ma JF, Sanchez BJ, Hall DT, Tremblay AK, Di Marco S, Gallouzi IE. STAT3 promotes IFNgamma/ TNFalpha-induced muscle wasting in an NF-kappaB-dependent and IL-6-independent manner. EMBO Mol Med. 2017; 9(5):622–37. Epub 2017/03/08. https://doi.org/10.15252/emmm.201607052 PMID: 28264935; PubMed Central PMCID: PMC5412921.

40. Libermann TA, Baltimore D. Activation of interleukin-6 gene expression through the NF-kappa B tran- scription factor. Mol Cell Biol. 1990; 10(5):2327–34. Epub 1990/05/01. https://doi.org/10.1128/mcb.10. 5.2327 PMID: 2183031; PubMed Central PMCID: PMC360580.

41. Spooren A, Kooijman R, Lintermans B, Van Craenenbroeck K, Vermeulen L, Haegeman G, et al. Coop- eration of NFkappaB and CREB to induce synergistic IL-6 expression in astrocytes. Cell Signal. 2010; 22(5):871–81. Epub 2010/01/27. https://doi.org/10.1016/j.cellsig.2010.01.018 PMID: 20100571.

42. Song J, Duncan MJ, Li G, Chan C, Grady R, Stapleton A, et al. A novel TLR4-mediated signaling path- way leading to IL-6 responses in human bladder epithelial cells. PLoS Pathog. 2007; 3(4):e60. Epub 2007/05/01. https://doi.org/10.1371/journal.ppat.0030060 PMID: 17465679; PubMed Central PMCID: PMC1857715.

参考文献をもっと見る