リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「CD44v9 Induces Stem Cell-Like Phenotypes in Human Cholangiocarcinoma」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

CD44v9 Induces Stem Cell-Like Phenotypes in Human Cholangiocarcinoma

SUWANNAKUL NATTAWAN 三重大学

2022.01.04

概要

Background: Our previous study demonstrated an overexpression of CD44 variant9 (CD44v9) in human cholangiocarcinoma (CCA) tissues that was associated with inflammation-related tumor development. However, the participation of CD44v9 in cholangiocarcinogenesis remains poorly understood. Therefore, in this study, we examined the potential roles of CD44v9 in CCA cells to understand the carcinogenic mechanism.
Methods: Using normal cholangiocytes (MMNK1) and CCA cells (KKU213), the expression levels of CD44v9 and its related molecules were quantified through RT-qPCR and immunofluorescence (IF) staining. To evaluate its biological functions, we performed CD44v9 (exon 13) silencing using siRNA transfection, and assessed cell proliferation through MTT assay, cell migration and invasion by transwell technique, and carried out cell cycle analysis by flow cytometry. In vivo tumor growth was assessed by nude mouse xenografts, and histological and molecular changes were determined.
Results: KKU213 exhibited higher protein expression levels of CD44v9 than those of MMNK1 through IF staining. RT-qPCR analysis revealed that the mRNA expression level of CD44v9 was predominantly elevated in CCA cells along with its neighboring exons such as variant 8 and 10, minimally affecting the standard form of CD44. CD44v9 silencing could regulate redox system in CCA cells by reducing the expression levels of SOD3 and cysteine transporter xCT. CD44v9 silencing suppressed the CCA cell proliferation by induction of apoptosis and cell cycle arrest. Migration and invasion were decreased in CD44v9 siRNA-treated CCA cells. CD44v9 downregulation inhibited CCA tumor growth in mouse xenografts. IF analysis demonstrated the histological changes in xenograft tissues such as an increase in connective tissues through collagen deposition and reduction of hyaluronic acid synthesis through CD44v9 silencing. CD44v9 knockdown in vitro and in vivo increased E-cadherin and reduced vimentin expression levels, resulting in reduction of epithelial-mesenchymal transition (EMT) process. Moreover, CD44v9 modulated Wnt10a and β-catenin in tumorigenesis.
Conclusion: Our results indicate that CD44v9 plays a potential role in CCA development by the regulation of cell proliferation and redox balancing. CD44v9 silencing may suppress tumor growth, migration and invasion through EMT: a finding that could potentially be applied in the development of targeted cancer therapy.

参考文献

Sarkar, S., Swiercz, R., Kantara, C., Hajjar, K. A., and Singh, P. (2011). Annexin

A2 mediates up-regulation of NF-κB, β-catenin, and stem cell in response to

progastrin in mice and HEK-293 cells. Gastroenterology 140, 583–595.

Senbanjo, L. T., and Chellaiah, M. A. (2017). CD44: a multifunctional cell surface

adhesion receptor is a regulator of progression and metastasis of cancer Cells.

Front. Cell. Dev. Biol. 5:18. doi: 10.3389/fcell.2017.00018

Suwannakul, N., Ma, N., Thanan, R., Pinlaor, S., Ungarreevittaya, P., Midorikawa,

K., et al. (2018). Overexpression of CD44 variant 9: a novel cancer stem cell

marker in human cholangiocarcinoma in relation to inflammation. Mediators

Inflam. 2018, 4867234–4867241.

Taniguchi, D., Saeki, H., Nakashima, Y., Kudou, K., Nakanishi, R., Kubo, N., et al.

(2018). CD44v9 is associated with epithelial-mesenchymal transition and poor

outcomes in esophageal squamous cell carcinoma. Cancer Med. 7, 6258–6268.

doi: 10.1002/cam4.1874

Thanee, M., Loilome, W., Techasen, A., Sugihara, E., Okazaki, S., Abe, S.,

et al. (2016). CD44 variant-dependent redox status regulation in liver flukeassociated cholangiocarcinoma: a target for cholangiocarcinoma treatment.

Cancer Sci. 107, 991–1000. doi: 10.1111/cas.12967

Vaquero, J., Guedj, N., Clapéron, A., Nguyen Ho-Bouldoires, T. H., Paradis, V., and

Fouassier, L. (2017). Epithelial-mesenchymal transition in cholangiocarcinoma:

from clinical evidence to regulatory networks. J. Hepatol. 66, 424–441. doi:

10.1016/j.jhep.2016.09.010

Wada, F., Koga, H., Akiba, J., Niizeki, T., Iwamoto, H., Ikezono, Y., et al.

(2018). High expression of CD44v9 and xCT in chemoresistant hepatocellular

carcinoma: potential targets by sulfasalazine. Cancer Sci. 109, 2801–2810. doi:

10.1111/cas.13728

Wada, T., Ishimoto, T., Seishima, R., Tsuchihashi, K., Yoshikawa, M., Oshima,

H., et al. (2013). Functional role of CD44v-xCT system in the development

of spasmolytic polypeptide-expressing metaplasia. Cancer Sci. 104, 1323–1329.

doi: 10.1111/cas.12236

Wang, S.-S., Jiang, J., Liang, X.-H., and Tang, Y.-L. (2015). Links between cancer

stem cells and epithelial-mesenchymal transition. Onco Targets Ther. 8, 2973–

2980.

Wang, Y., and Zhou, B. P. (2013). Epithelial-mesenchymal transition—a hallmark

of breast cancer metastasis. Cancer Hallm. 1, 38–49. doi: 10.1166/ch.2013.1004

Wei, C.-Y., Zhu, M.-X., Yang, Y.-W., Zhang, P.-F., Yang, X., Peng, R., et al.

(2019). Downregulation of RNF128 activates Wnt/β-catenin signaling to induce

cellular EMT and stemness via CD44 and CTTN ubiquitination in melanoma.

J. Hematol. Oncol. 12:21.

Xue, J., Zhu, Y., Sun, Z., Ji, R., Zhang, X., Xu, W., et al. (2015). Tumorigenic

hybrids between mesenchymal stem cells and gastric cancer cells enhanced

cancer proliferation, migration and stemness. BMC Cancer 15:793. doi: 10.1186/

s12885-015-1780-1

Yasui, W., Kudo, Y., Naka, K., Fujimoto, J., Ue, T., Yokozaki, H., et al. (1998).

Expression of CD44 containing variant exon 9 (CD44v9) in gastric adenomas

and adenocarcinomas: relation to the proliferation and progression. Int. J.

Oncol. 12, 1253–1258.

Zhang, K., Guo, Y., Wang, X., Zhao, H., Ji, Z., Cheng, C., et al. (2017). WNT/betacatenin directs self-renewal symmetric cell division of hTERT(high) prostate

cancer stem cells. Cancer Res. 77, 2534–2547. doi: 10.1158/0008-5472.can-161887

Zhang, K., Li, B., Li, P., Yang, X., Cui, H., and Liu, X. (2019). Cell-based

immunofluorescence assay for screening the neurogenesis potential of new

drugs in adult hippocampal neural progenitor cells. Acta Neurobiol. Exp. 79,

302–308.

Auvinen, P., Tammi, R., Parkkinen, J., Tammi, M., Agren, U., Johansson, R., et al.

(2000). Hyaluronan in peritumoral stroma and malignant cells associates with

breast cancer spreading and predicts survival. Am. J. Pathol. 156, 529–536.

doi: 10.1016/s0002-9440(10)64757-8

Avnet, S., and Cortini, M. (2016). Role of pericellular matrix in the regulation of

cancer stemness. Stem Cell Rev. 12, 464–475. doi: 10.1007/s12015-016-9660-x

Barat, S., Chen, X., Cuong Bui, K., Bozko, P., Götze, J., Christgen, M., et al. (2017).

Gamma-Secretase Inhibitor IX (GSI) impairs concomitant activation of Notch

and Wnt-beta-catenin pathways in CD44+ gastric cancer stem cells. Stem Cells

Transl. Med. 6, 819–829. doi: 10.1002/sctm.16-0335

Evanko, S. P., Potter-Perigo, S., Petty, L. J., Workman, G. A., and Wight, T. N.

(2015). Hyaluronan controls the deposition of fibronectin and collagen and

modulates TGF-β1 induction of lung myofibroblasts. Matrix Biol. 42, 74–92.

doi: 10.1016/j.matbio.2014.12.001

Golshani, R., Lopez, L., Estrella, V., Kramer, M., Iida, N., and Lokeshwar, V. B.

(2008). Hyaluronic acid synthase-1 expression regulates bladder cancer growth,

invasion, and angiogenesis through CD44. Cancer Res. 68, 483. doi: 10.1158/

0008-5472.can-07-2140

Griess, B., Tom, E., Domann, F., and Teoh-Fitzgerald, M. (2017). Extracellular

superoxide dismutase and its role in cancer. Free Radic. Biol. Med. 112, 464–479.

doi: 10.1016/j.freeradbiomed.2017.08.013

Guo, W., Chen, W., Yu, W., Huang, W., and Deng, W. (2013). Small interfering

RNA-based molecular therapy of cancers. Chin. J. Cancer 32, 488–493. doi:

10.5732/cjc.012.10280

Jiang, R., Niu, X., Huang, Y., and Wang, X. (2016). β-Catenin is important

for cancer stem cell generation and tumorigenic activity in nasopharyngeal

carcinoma. Acta Biochim. Biophys. Sin. 48, 229–237. doi: 10.1093/abbs/gmv134

Kiuchi, S., Ikeshita, S., Miyatake, Y., and Kasahara, M. (2015). Pancreatic cancer

cells express CD44 variant 9 and multidrug resistance protein 1 during mitosis.

Exp. Mol. Pathol. 98, 41–46. doi: 10.1016/j.yexmp.2014.12.001

Lamouille, S., Xu, J., and Derynck, R. (2014). Molecular mechanisms of epithelialmesenchymal transition. Nat. Rev. Mol. Cell. Biol. 15, 178–196. doi: 10.1038/

nrm3758

Li, Y., Lin, K., Yang, Z., Han, N., Quan, X., Guo, X., et al. (2017). Bladder

cancer stem cells: clonal origin and therapeutic perspectives. Oncotarget 8,

66668–66679. doi: 10.18632/oncotarget.19112

Long, A., Giroux, V., Whelan, K. A., Hamilton, K. E., Tétreault, M.-P., Tanaka,

K., et al. (2015). WNT10A promotes an invasive and self-renewing phenotype

in esophageal squamous cell carcinoma. Carcinogenesis 36, 598–606. doi: 10.

1093/carcin/bgv025

Lu, X., Gao, J., Zhang, Y., Zhao, T., Cai, H., and Zhang, T. (2018). CTEN induces

epithelial-mesenchymal transition (EMT) and metastasis in non small cell lung

cancer cells. PLoS One 13:e0198823. doi: 10.1371/journal.pone.0198823

Miwa, T., Nagata, T., Kojima, H., Sekine, S., and Okumura, T. (2017). Isoform

switch of CD44 induces different chemotactic and tumorigenic ability in

gallbladder cancer. Int. J. Oncol. 51, 771–780. doi: 10.3892/ijo.2017.4063

Miyoshi, S., Tsugawa, H., Matsuzaki, J., Hirata, K., Mori, H., Saya, H., et al. (2018).

Inhibiting xCT improves 5-Fluorouracil resistance of gastric cancer induced

by CD44 variant 9 expression. Anticancer Res. 38, 6163–6170. doi: 10.21873/

anticanres.12969

Montgomery, N., Hill, A., McFarlane, S., Neisen, J., O’Grady, A., Conlon, S.,

et al. (2012). CD44 enhances invasion of basal-like breast cancer cells by

upregulating serine protease and collagen-degrading enzymatic expression and

activity. Breast Cancer Res. 14:R84.

Ogihara, K., Kikuchi, E., Okazaki, S., Hagiwara, M., Takeda, T., Matsumoto,

K., et al. (2019). Sulfasalazine could modulate the CD44v9-xCT system and

enhance cisplatin-induced cytotoxic effects in metastatic bladder cancer. Cancer

Sci. 110, 1431–1441. doi: 10.1111/cas.13960

Oh, Y.-K., and Park, T. G. (2009). siRNA delivery systems for cancer treatment.

Adv. Drug Deliv. Rev. 61, 850–862. doi: 10.1016/j.addr.2009.04.018

Phi, L. T. H., Sari, I. N., Yang, Y.-G., Lee, S.-H., Jun, N., Kim, K. S., et al. (2018).

Cancer stem cells (CSCs) in drug resistance and their therapeutic implications

in cancer treatment. Stem Cells Int. 2018, 5416923–5416938.

Prochazka, L., Tesarik, R., and Turanek, J. (2014). Regulation of alternative splicing

of CD44 in cancer. Cell Signal. 26, 2234–2239. doi: 10.1016/j.cellsig.2014.07.011

Frontiers in Cell and Developmental Biology | www.frontiersin.org

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Suwannakul, Ma, Midorikawa, Oikawa, Kobayashi, He,

Kawanishi and Murata. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

15

June 2020 | Volume 8 | Article 417

...

参考文献をもっと見る