リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Neurotoxic Effects of Lactational Exposure to Perfluorooctane Sulfonate on Learning and Memory in Adult Male Mouse」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Neurotoxic Effects of Lactational Exposure to Perfluorooctane Sulfonate on Learning and Memory in Adult Male Mouse

Mshaty, Abdallah ムシャティ, アブダラ 群馬大学

2020.09.30

概要

Perfluorooctane sulfonate (PFOS) is an organic pollutant that was widely used in industries and consumer products. Because PFOS has been detected in umbilical cord blood, breast milk, and serum because of its stability and bioaccumulative properties, it is suspected to have developmental neurotoxicity in humans and rodents. However, the underlying mechanism remains unclear. Our study aims to examine the effect of early lactational PFOS exposures on learning and memory in male mice and reveal further the underlying mechanisms involved. PFOS solution (0.1, 0.25, and 1 mg/kg) was orally administered to dams from the postpartum days 1 to 14, so that pups would be exposed through breast milk. After the pups were 8– 10 weeks postnatal, we performed object location tests, object recognition tests, and pairwise visual discrimination tasks. We also performed mRNA and protein analysis of genes responsible for hippocampal development and function. In both object location and object recognition memory tests, the performance of mice in the 1 mg/kg PFOS-exposed (PF-1) group was significantly lower than those in the control group. Moreover, in the pairwise visual discrimination task, PF-1 group mice learned significantly slower than the control group, although the proportion of correct responses gradually increased in all groups. In vivo microdialysis showed that concentrations of glutamate (Glu) and gamma-aminobutyric acid (GABA) in the dorsal hippocampus were significantly higher in the PF-1 group than in the control group. No notable differences were shown in our mRNA and protein studies. Our study showed that lactational PFOS exposure has a profound, long-lasting toxic effect in the hippocampus and consequently leads to declarative memory deficits. Furthermore, GABA and Glu concentrations were significantly higher in the PF-1 group, indicating that such changes may be partially responsible for the behavioral changes.

この論文で使われている画像

参考文献

Aggleton, J.P., Brown, M.W., 2005. Contrasting Hippocampal and Perirhinalcortex Function using Immediate Early Gene Imaging. Q. J. Exp. Psychol. B 58, 218–233. https://doi.org/10.1080/02724990444000131

Amano, I., Takatsuru, Y., Khairinisa, M.A., Kokubo, M., Haijima, A., Koibuchi, N., 2018. Effects of Mild Perinatal Hypothyroidism on Cognitive Function of Adult Male Offspring.Endocrinology 159, 1910–1921. https://doi.org/10.1210/en.2017-03125

Amaral, D.G., Witter, M.P., 1989. The three-dimensional organization of the hippocampal formation: A review of anatomical data. Neuroscience 31, 571–591. https://doi.org/10.1016/0306-4522(89)90424-7

Austin, M.E., Kasturi, B.S., Barber, M., Kannan, K., MohanKumar, P.S., MohanKumar, S.M.J., 2003. Neuroendocrine effects of perflurooactane sulfonate in rats. Environ. Health Perspect. 111, 1485–1489. https://doi.org/10.1289/ehp.6128

Bayer, S.A., 1980. Development of the hippocampal region in the rat I. Neurogenesis examined with3H-thymidine autoradiography. J. Comp. Neurol. 190, 87–114. https://doi.org/10.1002/cne.901900107

Bird, C.M., Burgess, N., 2008. The hippocampus and memory: Insights from spatial processing.Nat. Rev. Neurosci. 9, 182–194. https://doi.org/10.1038/nrn2335

Butenhoff, J.L., Ehresman, D.J., Chang, S., Parker, G.A., Stump, D.G., 2009. Gestational and lactational exposure to potassium perfluorooctanesulfonate (K + PFOS) in rats : Developmental neurotoxicity. Reprod. Toxicol. 27, 319–330. https://doi.org/10.1016/j.reprotox.2008.12.010

Chang, E.T., Adami, H.O., Boffetta, P., Cole, P., Starr, T.B., Mandel, J.S., 2014. A critical review of perfluorooctanoate and perfluorooctanesulfonate exposure and cancer risk in humans. Crit. Rev. Toxicol. 44, 1–81. https://doi.org/10.3109/10408444.2014.905767

Chang, S.-C., Noker, P.E., Gorman, G.S., Gibson, S.J., Hart, J.A., Ehresman, D.J., Butenhoff, J.L., 2012. Comparative pharmacokinetics of perfluorooctanesulfonate (PFOS) in rats, mice, and monkeys. Reprod. Toxicol. 33, 428–440. https://doi.org/10.1016/j.reprotox.2011.07.002

Chen, M., Ha, E., Liao, H., Jeng, S., Su, Y., Wen, T., 2013. Perfluorinated Compound Levels in Cord Blood and Neurodevelopment at 2 Years of Age. Epidemiology 24, 800–808. https://doi.org/10.1097/EDE.0b013e3182a6dd46

Chuang, N., Mori, S., Yamamoto, A., Jiang, H., Ye, X., Xu, X., Richards, L.J., Nathans, J., Miller, M.I., Toga, A.W., Sidman, R.L., Zhang, J., 2011. An MRI-based atlas and database of the developing mouse brain. Neuroimage 54, 80–89. https://doi.org/10.1016/j.neuroimage.2010.07.043

Cui, L., Zhou, Q., Liao, C., Fu, J., Jiang, G., 2009. Studies on the Toxicological Effects of PFOA and PFOS on Rats Using Histological Observation and Chemical Analysis. Arch. Environ. Contam. Toxicol. 56, 338–349. https://doi.org/10.1007/s00244-008-9194-6

Fei, C., McLaughlin, J.K., Lipworth, L., Olsen, J., 2008. Prenatal exposure to perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) and maternally reported developmental milestones in infancy. Environ. Health Perspect. 116, 1391–1395. https://doi.org/10.1289/ehp.11277

Gallo, V., Leonardi, G., Brayne, C., Armstrong, B., Fletcher, T., 2013. Serum perfluoroalkyl acids concentrations and memory impairment in a large cross-sectional study. BMJ Open 3, 1–9. https://doi.org/10.1136/bmjopen-2012-002414

Gallo, V., Leonardi, G., Genser, B., Lopez-Espinosa, M.-J., Frisbee, S.J., Karlsson, L., Ducatman, A.M., Fletcher, T., 2012. Serum Perfluorooctanoate (PFOA) and Perfluorooctane Sulfonate (PFOS) Concentrations and Liver Function Biomarkers in a Population with Elevated PFOA Exposure. Environ. Health Perspect. 120, 655–660. https://doi.org/10.1289/ehp.1104436

Gilley, J.A., Yang, C.-P., Kernie, S.G., 2011. Developmental profiling of postnatal dentate gyrus progenitors provides evidence for dynamic cell-autonomous regulation. Hippocampus 21, 33–47. https://doi.org/10.1002/hipo.20719

Grove, E.A., Tole, S., 1999. Patterning events and specification signals in the developing hippocampus. Cereb. Cortex 9, 551–561. https://doi.org/10.1093/cercor/9.6.551

Han, J., Fang, Z., 2010. Estrogenic effects, reproductive impairment and developmental toxicity in ovoviparous swordtail fish (Xiphophorus helleri) exposed to perfluorooctane sulfonate (PFOS). Aquat. Toxicol. 99, 281–290. https://doi.org/10.1016/j.aquatox.2010.05.010

Hoffman, K., Webster, T.F., Weisskopf, M.G., Weinberg, J., Vieira, V.M., 2010. Exposure to polyfuoroalkyl chemicals and attention deficit/hyperactivity disorder in U.S. children 12-15 years of age. Environ. Health Perspect. 118, 1762–1767. https://doi.org/10.1289/ehp.1001898 Høyer, B.B., Ramlau-hansen, C.H., Obel, C., Pedersen, H.S., Hernik, A., Ogniev, V., Jönsson, B.A.G., Lindh, C.H., Rylander, L., Rignell-hydbom, A., Bonde, J.P., 2015. Pregnancy serum concentrations of perfluorinated alkyl substances and offspring behaviour and motor development at age 5–9 years – a prospective study. Environ. Heal. 14, 1–11.

Ishida, K., Tsuyama, Y., Sanoh, S., Ohta, S., Kotake, Y., 2017. Perfluorooctane sulfonate induces neuronal vulnerability by decreasing GluR2 expression. Arch. Toxicol. 91, 885–895. https://doi.org/10.1007/s00204-016-1731-x

Jensen, A.A., Leffers, H., 2008. Emerging endocrine disrupters: Perfluoroalkylated substances. Int.J. Androl. 31, 161–169. https://doi.org/10.1111/j.1365-2605.2008.00870.x

Kannan, K., Franson, J.C., Bowerman, W.W., Hansen, K.J., Jones, P.D., Giesy, J.P., 2001a. Perfluorooctane sulfonate in fish-eating water birds including bald eagles and albatrosses. Environ. Sci. Technol. 35, 3065–3070. https://doi.org/10.1021/es001935i

Kannan, K., Franson, J.C., Bowerman, W.W., Hansen, K.J., Jones, P.D., Giesy, J.P., 2001b. Perfluorooctane Sulfonate in Fish-Eating Water Birds Including Bald Eagles and Albatrosses. Environ. Sci. Technol. 35, 3065–3070. https://doi.org/10.1021/es001935i

Kim, H.-S., Jun Kwack, S., Sik Han, E., Seok Kang, T., Hee Kim, S., Young Han, S., 2011. Induction of apoptosis and CYP4A1 expression in Sprague-Dawley rats exposed to low doses of perfluorooctane sulfonate. J. Toxicol. Sci. 36, 201–210. https://doi.org/10.2131/jts.36.201

Kitamura, T., 2017. Driving and regulating temporal association learning coordinated by entorhinal-hippocampal network. Neurosci. Res. 121, 1–6. https://doi.org/10.1016/j.neures.2017.04.005

Koibuchi, N., Jingu, H., Iwasaki, T., Chin, W.W., 2003. Current perspectives on the role of thyroid hormone in growth and development of cerebellum. Cerebellum 2, 279–289. https://doi.org/10.1080/14734220310011920

Lau, C., Thibodeaux, J.R., Hanson, R.G., Rogers, J.M., Grey, B.E., Stanton, M.E., Butenhoff, J.L., Stevenson, L.A., 2003. Exposure to Perfluorooctane Sulfonate during Pregnancy in Rat and Mouse. II: Postnatal Evaluation. Toxicol. Sci. 74, 382–392. https://doi.org/10.1093/toxsci/kfg122

Lau, C., Thibodeaux, J.R., Hanson, R.G., Rogers, J.M., Grey, B.E., Stanton, M.E., Buttenhoff, J.L., Stevenson, L.A., 2003a. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: Postnatal evaluation. Toxicol. Sci. 74, 382–392. https://doi.org/10.1093/toxsci/kfg122

Lau, C., Thibodeaux, J.R., Hanson, R.G., Rogers, J.M., Grey, B.E., Stanton, M.E., Buttenhoff, J.L., Stevenson, L.A., 2003b. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: Postnatal evaluation. Toxicol. Sci. 74, 382–392. https://doi.org/10.1093/toxsci/kfg122

Lee, Y.J., Lee, H.G., Yang, J.H., 2013. Perfluorooctane sulfonate-induced apoptosis of cerebellar granule cells is mediated by ERK 1/2 pathway. Chemosphere 90, 1597–1602.https://doi.org/10.1016/j.chemosphere.2012.08.033

Li, Z., Liu, Q., Liu, C., Li, C., Li, Y., Li, S., Liu, X., Shao, J., 2017. Evaluation of PFOS-mediated neurotoxicity in rat primary neurons and astrocytes cultured separately or in co-culture. Toxicol. in Vitro. 38, 77–90. https://doi.org/10.1016/j.tiv.2016.11.002

Liu, X., Liu, W., Jin, Y., Yu, W., Wang, F., Liu, L., 2010a. Effect of gestational and lactational exposure to perfluorooctanesulfonate on calcium-dependent signaling molecules gene expression in rats’ hippocampus. Arch. Toxicol. 84, 71–79. https://doi.org/10.1007/s00204- 009-0467-2

Liu, X., Liu, W., Jin, Y., Yu, W., Wang, F., Liu, L., 2010b. Effect of gestational and lactational exposure to perfluorooctanesulfonate on calcium-dependent signaling molecules gene expression in rats’ hippocampus. Arch. Toxicol. 84, 71–79. https://doi.org/10.1007/s00204- 009-0467-2

Loccisano, A.E., Campbell, J.L., Butenhoff, J.L., Andersen, M.E., Clewell, H.J., 2012. Evaluation of placental and lactational pharmacokinetics of PFOA and PFOS in the pregnant, lactating, fetal and neonatal rat using a physiologically based pharmacokinetic model. Reprod. Toxicol. 33, 468–490. https://doi.org/10.1016/j.reprotox.2011.07.003

Loccisano, A.E., Longnecker, M.P., Campbell, J.L., Andersen, M.E., Clewell, H.J., 2013. Development of pbpk models for pfoa and pfos for human pregnancy and lactation life stages, Journal of Toxicology and Environmental Health - Part A: Current Issues. https://doi.org/10.1080/15287394.2012.722523

Miralles-marco, A., Harrad, S., 2015. Perfluorooctane sulfonate : A review of human exposure , biomonitoring and the environmental forensics utility of its chirality and isomer distribution. Environ. Int. 77, 148–159. https://doi.org/10.1016/j.envint.2015.02.002

Morreale de Escobar, G., Obregon, M., Escobar del Rey, F., 2004. Role of thyroid hormone during early brain development. Eur. J. Endocrinol. 151, U25–U37. https://doi.org/10.1530/eje.0.151U025

Murofushi, W., Mori, K., Murata, K., Yamaguchi, M., 2018. Functional development of olfactory tubercle domains during weaning period in mice. Sci. Rep. 8, 1–15. https://doi.org/10.1038/s41598-018-31604-1

OECD [WWW Document], 2002. URL http://www.oecd.org/chemicalsafety/risk-management/perfluorooctanesulfonatepfosandrelatedchemicalproducts.htm

Oulhote, Y., Steuerwald, U., Debes, F., Weihe, P., Grandjean, P., 2017. Behavioral difficulties in 7- year old children in relation to developmental exposure to perfluorinated alkyl substances. Environ. Int. 97, 237–245. https://doi.org/10.1016/j.physbeh.2017.03.040

Paulsen, O., Moser, E.I., 1998. A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity. Trends Neurosci. 21, 273–278. https://doi.org/10.1016/S0166-2236(97)01205-8

Pérez, F., Nadal, M., Navarro-Ortega, A., Fàbrega, F., Domingo, J.L., Barceló, D., Farré, M., 2013. Accumulation of perfluoroalkyl substances in human tissues. Environ. Int. 59, 354–362. https://doi.org/10.1016/j.envint.2013.06.004

Prevedouros, K., Cousins, I.T., Buck, R.C., Korzeniowski, S.H., 2006. Sources, fate and transport of perfluorocarboxylates. Environ. Sci. Technol. 40, 32–44. https://doi.org/10.1021/es0512475

Salgado, R., Pereiro, N., López-Doval, S., Lafuente, A., 2015. Initial study on the possible mechanisms involved in the effects of high doses of perfluorooctane sulfonate (PFOS) on prolactin secretion. Food Chem. Toxicol. 83, 10–16. https://doi.org/10.1016/j.fct.2015.05.013

Semënov, M. V., 2019. Adult Hippocampal Neurogenesis Is a Developmental Process Involved in Cognitive Development. Front. Neurosci. 13, 1–5. https://doi.org/10.3389/fnins.2019.00159 Semple, B.D., Blomgren, K., Gimlin, K., Ferriero, D.M., Noble-Haeusslein, L.J., 2013. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog. Neurobiol. 1–16, 106–107. https://doi.org/10.1016/j.pneurobio.2013.04.001

Shi, X., Liu, C., Wu, G., Zhou, B., 2009. Waterborne exposure to PFOS causes disruption of the hypothalamus–pituitary–thyroid axis in zebrafish larvae. Chemosphere 77, 1010–1018. https://doi.org/10.1016/j.chemosphere.2009.07.074

Takatsuru, Y., Eto, K., Kaneko, R., Masuda, H., Shimokawa, N., Koibuchi, N., Nabekura, J., 2013. Critical Role of the Astrocyte for Functional Remodeling in Contralateral Hemisphere of Somatosensory Cortex after Stroke. J. Neurosci. 33, 4683–4692. https://doi.org/10.1523/JNEUROSCI.2657-12.2013

Thompson, J., Eaglesham, G., Reungoat, J., Poussade, Y., Bartkow, M., Lawrence, M., Mueller, J.F., 2015. Removal of PFOS , PFOA and other perfluoroalkyl acids at water reclamation plants in South East Queensland Australia. Chemosphere 82, 9–17. https://doi.org/10.1016/j.chemosphere.2010.10.040

van Strien, N.M., Cappaert, N.L.M., Witter, M.P., 2009. The anatomy of memory: An interactive overview of the parahippocampal- hippocampal network. Nat. Rev. Neurosci. 10, 272–282. https://doi.org/10.1038/nrn2614

Wang, Y., Liu, W., Zhang, Q., Zhao, H., Quan, X., 2015. Effects of developmental perfluorooctane sulfonate exposure on spatial learning and memory ability of rats and mechanism associated with synaptic plasticity. Food Chem. Toxicol. 76, 70–76.https://doi.org/10.1016/j.fct.2014.12.008

Wang, Z., Cousins, I.T., Scheringer, M., Buck, R.C., Hungerbühler, K., 2014. Global emission inventories for C 4 – C 14 per fl uoroalkyl carboxylic acid ( PFCA ) homologues from 1951 to 2030 , Part I : production and emissions from quanti fi able sources. Environ. Int. 70, 62–75. https://doi.org/10.1016/j.envint.2014.04.013

Yu, W.-G., Liu, W., Jin, Y.-H., Liu, X.-H., Wang, F.-Q., Liu, L., Nakayama, S.F., 2009. Prenatal and Postnatal Impact of Perfluorooctane Sulfonate (PFOS) on Rat Development: A Cross- Foster Study on Chemical Burden and Thyroid Hormone System. Environ. Sci. Technol. 43, 8416–8422. https://doi.org/10.1021/es901602d

Zhang, Q., Liu, W., Zhao, H., Zhang, Z., Qin, H., Luo, F., Niu, Q., 2019. Developmental perfluorooctane sulfonate exposure inhibits long-term potentiation by affecting AMPA receptor trafficking. Toxicology 412, 55–62. https://doi.org/10.1016/j.tox.2018.11.015

Zhang, S., Kang, Q., Peng, H., Ding, M., Zhao, F., Zhou, Y., Dong, Z., Zhang, H., Yang, M., Tao, S., Hu, J., 2019. Relationship between perfluorooctanoate and perfluorooctane sulfonate blood concentrations in the general population and routine drinking water exposure. Environ. Int. 126, 54–60. https://doi.org/10.1016/j.envint.2019.02.009

Zou, J., Wang, Y.-X., Dou, F.-F., Lü, H.-Z., Ma, Z.-W., Lu, P.-H., Xu, X.-M., 2010. Glutamine synthetase down-regulation reduces astrocyte protection against glutamate excitotoxicity to neurons. Neurochem. Int. 56, 577–584. https://doi.org/10.1016/j.neuint.2009.12.021

参考文献をもっと見る