リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Biochemical properties Scardovia wiggsiae, a novel caries-associated bacterium-Sugar metabolism and growth-promoting factors-」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Biochemical properties Scardovia wiggsiae, a novel caries-associated bacterium-Sugar metabolism and growth-promoting factors-

KOHARI, MAI 東北大学

2023.03.24

概要

Many children in low-income families suffer from early childhood caries (ECC), which
remains a public health problem worldwide [Kasebaum et al., 2015]. Such lesions
progress rapidly and destroy the primary dentition, and they increase the risk of caries in
the permanent teeth. Furthermore, successful treatment is difficult and as many as 50%
of children relapse after treatment [Tanner et al., 2011; Hajishengallis et al., 2017]. The
oral biofilm is involved in the formation of ECC and is derived from various factors, such
as oral bacteria on the dentin surface, saliva, and dietary carbohydrates [Hajishengallis et
al., 2017]. Scardovia wiggsiae in addition to Streptococcus mutans and other acidproducing bacteria have also been associated with white spot initial carious lesions and
aggressive caries in adolescents [Tanner et al., 2012; Eriksson et al., 2018].
While S. wiggsiae has been detected in ECC without S. mutans, a bacterial complex
including S. mutans and S. wiggsiae characterized adolescents with active caries
[Eriksson et al., 2018]. S. wiggsiae was isolated from root caries in adults expanding the
age range of patients with S. wiggsiae associated carious lesions [Mantzourani et al.,
2009]. Metabolically S. wiggsiae contributes to the acidification of the oral biofilm and
is receiving increasing attention as a caries-associated bacterium [Hajishengallis et al.,
2017]. Although it is recognized that caries-associated bacteria such as S.
mutans and lactobacilli can cause caries, it has been reported that other caries-associated
bacteria, including S. ...

この論文で使われている画像

参考文献

42

Anil S, Anand PS. Early Childhood Caries: Prevalence, Risk Factors, and Prevention.

Front Pediatr. 2017 Jul 18;5: 157. doi: 10.3389/fped.2017.00157. PMID:

28770188; PMCID: PMC5514393.Balhaddad AA, Ayoub HM, Gregory RL. InVitro Model of Scardovia wiggsiae Biofilm Formation and Effect of Nicotine.

Braz Dent J. 2020 Sep-Oct;31(5):471-476. doi: 10.1590/0103-6440202003207.

PMID: 33146329.

Becker, MR., Paster, BJ., Leys, EJ., Moeschberger, ML., Kenyon, SG., Galvin, JL.,

Boches, SK., Dewhirst, FE., Griffen, AL. (2002). Molecular analysis of bacterial

species associated with childhood caries. J Clin Microbiol. 40, 1001-1009.

Carda-Diéguez M, Bravo-González LA, Morata IM, Vicente A, Mira A. Highthroughput DNA sequencing of microbiota at interproximal sites. J Oral

Microbiol. 2019 Nov 11;12(1):1687397. doi: 10.1080/20002297.2019.1687397.

PMID: 32002129; PMCID: PMC6853236.

de Vries W, Stouthamer AH. Fermentation of glucose, lactose, galactose, mannitol, and

xylose by bifidobacteria. J Bacteriol. 1968 Aug;96(2):472-8. doi:

10.1128/jb.96.2.472-478.1968. PMID: 5674058; PMCID: PMC252320.

Evans NM, Smith DD, Wicken AJ. Haemin and nicotinamide adenine dinucleotide

requirements of Haemophilus influenzae and Haemophilus parainfluenzae. J Med

Microbiol. 1974 Aug;7(3):359-65. Doi: 10.1099/00222615-7-3-359. PMID:

4371115.

Gazzaniga F, Stebbins R, Chang SZ, McPeek MA, Brenner C. Microbial NAD

metabolism: lessons from comparative genomics. Microbiol Mol Biol Rev. 2009

Sep;73(3):529-41, Table of Contents. doi: 10.1128/MMBR.00042-08. PMID:

19721089; PMCID: PMC2738131.

Gingrich W, Schlenk F. Codehydrogenase I and Other Pyridinium Compounds as VFactor for Hemophilus influenzae and H. parainfluenzae. J Bacteriol. 1944

Jun;47(6):535-50. doi: 10.1128/jb.47.6.535-550.1944. PMID: 16560803; PMCID:

PMC373952.

Henne K, Rheinberg A, Melzer-Krick B, Conrads G. Aciduric microbial taxa including

Scardovia wiggsiae and Bifidobacterium spp. in caries and caries free subjects.

43

Anaerobe. 2015 Oct;35(Pt A):60-5. doi: 10.1016/j.anaerobe.2015.04.011. Epub

2015 Apr 28. PMID: 25933689.

Herbert M, Sauer E, Smethurst G, Kraiss A, Hilpert AK, Reidl J. Nicotinamide ribosyl

uptake mutants in Haemophilus influenzae. Infect Immun. 2003 Sep;71(9):5398401. doi: 10.1128/IAI.71.9.5398-5401.2003. PMID: 12933892; PMCID:

PMC187334.

Hughes CV, Dahlan M, Papadopolou E, Loo CY, Pradhan NS, Lu SC, Mathney JM,

Bravoco A, Kent RL Jr, Tanner AC. Aciduric microbiota and mutans streptococci

in severe and recurrent severe early childhood caries. Pediatr Dent. 2012 MarApr;34(2):e16-23. PMID: 22583872; PMCID: PMC3353719.

Jian W, Dong X. Transfer of Bifidobacterium inopinatum and Bifidobacterium

denticolens to Scardovia inopinata gen. nov., comb. nov., and Parascardovia

denticolens gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol. 2002

May;52(Pt 3):809-812. doi: 10.1099/00207713-52-3-809. PMID: 12054242.

Kameda M, Abiko Y, Washio J, Tanner ACR, Kressirer CA, Mizoguchi I, Takahashi N.

Sugar Metabolism of Scardovia wiggsiae, a Novel Caries-Associated Bacterium.

Front Microbiol. 2020 Mar 25;11:479. doi: 10.3389/fmicb.2020.00479. PMID:

32269556; PMCID: PMC7109253.

Kang K, Sun Y, Pan D, Chang B, Sang LX. Nicotinamide Ameliorates Dextran Sulfate

Sodium-Induced Chronic Colitis in Mice through Its Anti-Inflammatory

Properties and Modulates the Gut Microbiota. J Immunol Res. 2021 Mar

6;2021:5084713. doi: 10.1155/2021/5084713. PMID: 33748287; PMCID:

PMC7959969.

Karsten Henne, Anke Rheinberg, Beate Melzer-Krick, Georg Conrads. Aciduric

microbial taxa including Scardovia wiggsiae and Bifidobacterium spp. in caries

and caries free subjects. Anaerobe. 2015 Oct;35(Pt A):60-5. doi:

10.1016/j.anaerobe.2015.04.011. Epub 2015 Apr 28

Leder IG, Handler P. Synthesis of nicotinamide mononucleotide by human erythrocytes

in vitro. J Biol Chem. 1951 Apr;189(2):889-99. PMID: 14832305.

44

Li, Y., Tanner, A. (2015). Effect of Antimicrobial Interventions on the Oral Microbiota

Associated with Early Childhood Caries. Pediatr Dent. 37, 226-244.

Lin Y, Gong T, Ma Q, Jing M, Zheng T, Yan J, Chen J, Pan Y, Sun Q, Zhou X, Li Y.

Nicotinamide could reduce growth and cariogenic virulence of Streptococcus

mutans. J Oral Microbiol. 2022 Mar 23;14(1):2056291. doi:

10.1080/20002297.2022.2056291. PMID: 35341208; PMCID: PMC8956312.

Manome A., Abiko Y., Kawashima J., Washio J., Fukumoto S., Takahashi N. (2019).

Acidogenic potential of oral Bifidobacterium and its high fluoride tolerance.

Front. Microbiol. 16:1099. 10.3389/fmicb.2019.01099

Mantzourani M, Fenlon M, Beighton D. Association between Bifidobacteriaceae and

the clinical severity of root caries lesions. Oral Microbiol Immunol. 2009

Feb;24(1):32-7. doi: 10.1111/j.1399-302X.2008.00470.x. PubMed PMID:

19121067

Miguel Carda-Diéguez, Luis Alberto Bravo-González, Isabel María Morata , Ascensión

Vicente, Alex Mira. High-throughput DNA sequencing of microbiota at

interproximal sites. J OralMicrobiol. 2019Nov11;12(1):1687397.doi:

10.1080/20002297.2019.1687397. eCollection 2020.

Morton DJ, VanWagoner TM, Seale TW, Whitby PW, Stull TL. Catalase as a source of

both X- and V-factor for Haemophilus influenzae. FEMS Microbiol Lett. 2008

Feb;279(2):157-61. doi: 10.1111/j.1574-6968.2007.01020.x. Epub 2007 Dec 18.

PMID: 18093136.

Murray MF. Nicotinamide: an oral antimicrobial agent with activity against both

Mycobacterium tuberculosis and human immunodeficiency virus. Clin Infect Dis.

2003;36(4):453–460.

Norimatsu, Y., Kawashima, J., Takano-Yamamoto, T., Takahashi, N. (2015).

Nitrogenous compounds stimulate glucose-derived acid production by oral

Streptococcus and Actinomyces. Microbiol Immunol. 59, 501-506. doi:

10.1111/1348-0421.12283

45

Rolfe HM. A review of nicotinamide: treatment of skin diseases and potential side

effects. J Cosmet Dermatol. 2014;13(4):324–328.

Ruas-Madiedo P., Hernández-Barranco A., Margolles A., de los Reyes-Gavilán C. G. A

bile salt-resistant derivative of Bifidobacterium animalis has an altered

fermentation pattern when grown on glucose and maltose. Appl. Environ.

Microbiol. 71 6564–6570. 10.1128/aem.71.11.6564-6570.2005

Sánchez B., Champomier-Vergès M. C., Anglade P., Baraige F., de Los Reyes-Gavilán

C. G., Margolles A., et al. (2005). Proteomic analysis of global changes in protein

expression during bile salt exposure of Bifidobacterium longum NCIMB 8809. J.

Bacteriol. 187 5799–5808. 10.1128/jb.187.16.5799-5808.2005

Shifrine, M., Bierstein, E. A Growth Factor for Haemophilus Species secreted by a

Pseudomonad. Nature 187, 623 (1960). https://doi.org/10.1038/187623a0

Shirmohammadi M, Razeghi S, Shamshiri AR, Mohebbi SZ. Impact of smartphone

application usage by mothers in improving oral health and its determinants in

early childhood: a randomised controlled trial in a paediatric dental setting. Eur

Arch Paediatr Dent. 2022 Aug;23(4):629-639. doi: 10.1007/s40368-022-00731-9.

Epub 2022 Jul 16. PMID: 35841512; PMCID: PMC9287817.

Takahashi, N., Abbe, K., Takahashi-Abbe, S., Yamada, T. (1987). Oxygen sensitivity of

sugar metabolism and interconversion of pyruvate formate-lyase in intact cells of

Streptococcus mutans and Streptococcus sanguis. Infect Immun. 55, 652-656.

Figure legends

Figure 1. Effect of NAM, NA, NAD, and hemin on the growth and final pH of S. wiggsiae.

46

(A) The increase of bacterial growth until 96 hours; (B) The final pH.

Date ware calculated as follow; ΔOD = (OD at 96 hour) – (OD at 0 hour).

Figure 2. Effects of NAM, NAD, and hemin on the acidic end-products. These data show

the proportion of acidic end-products, acetate, formate, and lactate.

Figure 3. A, Synergy effect of NAD and hemin on bacterial growth; B, Synergy effect of

NAD and hemin on the proportion of acidic end-products.

Date ware calculated as follow; ΔOD = (OD at 96 hour) – (OD at 0 hour).

Figure 4. Proposed biosynthetic pathways of S. wiggsiae and H. influensae for NAD

production and enzymes which catalyze these pathways; NAM, Nicotinamide; NAD,

nicotinamide adenine dinucleotide;

NA, nicotinic acid;

mononucleotide; NR, nicotinamide riboside.

47

NMN,

nicotinamide

48

49

50

51

Conclusion

The present study (Chapters I and II) revealed that S. wiggsiae had high acid-productivity

and fluoride tolerance due a unique metabolic pathway F6PPK-shunt. These abilities were

also exhibited in low pH environments, suggesting this bacterium possess high cariesinduce potential. In addition, it was found that NAD and hemin, which are blood

components, and NAM which is a precursor of NAD, promoted the growth and acid

production of S. wiggsiae. In ECC, due to poor oral hygiene, gingivitis with bleeding is

frequently observed along with caries, suggesting that ECC may provide an acidic

environment rich in blood components in which S. wiggsiae grows and exhibits high

cariogenicity. In the present study, we clarified the biochemical characteristics involve in

sugar metabolism and growth promotion in S. wiggsiae, and gained insight into the

contribution of this bacterium to ECC.

52

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Prof. Nobuhiro Takahashi

of Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of

Dentistry, and Prof. Itaru Mizoguchi of Division of Orthodontics and Dentofacial

Orthopedics, Tohoku University Graduate School of Dentistry, for their direction and

review throughout the whole process of research.

Additionally, I would like to express my deepest appreciation to Dr. Yuki Abiko, Dr.

Jumpei Washio, Prof. Anne C. R. Tanner, and Dr. Christine A. Kressirer, for their

elaborated guidance, considerable encouragement, and invaluable discussion that make

my research of great achievement.

53

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る