リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Presence of Colistin- and Tigecycline-Resistant Klebsiella pneumoniae ST29 in Municipal Wastewater Influents in Japan」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Presence of Colistin- and Tigecycline-Resistant Klebsiella pneumoniae ST29 in Municipal Wastewater Influents in Japan

Hayashi, Wataru Iimura, Masaki Soga, Eiji Koide, Shota Izumi, Katsutoshi Yoshida, Satoshi Arakawa, Yoshichika Nagano, Yukiko Nagano, Noriyuki 信州大学 DOI:33835858

2022.11.14

概要

The aim of this study was to investigate the presence of colistin- and/or tigecycline-resistant Klebsiella spp. in influents from four wastewater treatment plants (WWTPs), which partly reflect the gut microbiome of human populations. Colistin- and tigecycline-resistant Klebsiella pneumoniae isolates (K30/ST29) were detected four times from the WWTP A during a period of 3 months. Disruptions of the mgrB and ramR genes by ISEc68 and ISKpn21, respectively, were identified in those four isolates. They also shared the IncL/M 86,197-bp plasmids carrying a bla(CTX-M-3) and Tn1548-associated armA [IS26-IntI1-dfrA12-gucF-aadA2-qacE Delta 1-sul1-ISCR1-ISEc28-armA-ISEc29-msr(E)-mph(E)-IS26]. Those isolates formed a distinct cluster within wgMLST clusters of ST29 K30 public reference strains of human origin and were unique due to harboring of Tn21-like mercury resistance operon transposons in addition to silver, copper, and arsenic resistance determinants. Five K. pneumoniae strains with different STs and 1 Klebsiella quasipneumoniae strain, exhibiting colistin resistance, were detected in WWTPs B, C, and D. For these isolates, disruptions of mgrB by ISEc68 (three isolates) or ISEcl1 (one isolate), insertion of IS2 in the mgrB promoter region (one isolate), and inactivation of MgrB by a nonsense mutation (one isolate) were identified. Close monitoring of these mcr-negative colistin- and/or tigecycline-resistant bacteria in wastewater influents is imperative to avoid further limiting of treatment options.

この論文で使われている画像

参考文献

1. European Centre for Disease Prevention and Control. 2019. Carbapenem-resistant Enterobacteriaceae, second update, 26 September 2019. ECDC, Stockholm.

2. Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev 2017;41:252-275.

3. Poirel L, Jayol A, Bontron S, et al. The mgrB gene as a key target for acquired resistance to colistin in Klebsiella pneumoniae. J Antimicrobial Chemother 2015;70:75-80.

4. Yang TY, Wang SF, Lin JE, et al. Contributions of insertion sequences conferring colistin resistance in Klebsiella pneumoniae. Int J Antimicrob Agents 2020;55:105894.

5. Hayashi W, Togashi M, Taniguchi Y, Koide S, Nagano Y, Nagano N. First report of colistin resistance in OXA-181 carbapenemase-producing Klebsiella pneumoniae ST3130 in Japan. J Glob Antimicrob Resist 2018;12:179-180.

6. Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016;16:161-168.

7. Sun J, Zhang H, Liu YH, Feng Y. Towards understanding MCR-like colistin resistance. Trends Microbiol 2018;26:794-808.

8. Pournaras S, Koumaki V, Spanakis N, Gennimata V, Tsakris A. Current perspectives on tigecycline resistance in Enterobacteriaceae: susceptibility testing issues and mechanisms of resistance. Int. J Antimicrob Agents 2016;48:11-18.

9. Conte D, Palmeiro JK, da Silva Nogueira K, et al. Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water. Ecotoxicol Environ Saf 2017;136:62-69.

10. Taniguchi Y, Maeyama Y, Ohsaki Y, et al. Co-resistance to colistin and tigecycline by disrupting mgrB and ramR with IS insertions in a canine Klebsiella pneumoniae ST37 isolate producing SHV-12, DHA-1 and FosA3. Int J Antimicrob Agents 2017;50:697-698.

11. Villa L, Feudi C, Fortini D, Garcia-Fernandez A, Carattoli A. Genomics of KPC-producing Klebsiella pneumoniae sequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance. Antimicrob Agents Chemother 2014;58:1707-1712.

12. Mao Y, Shi Q, Zhang P, Jiang Y, Yu Y. Effect of ramR loss-of-function insertion on tigecycline resistance in clinical isolates of carbapenem-resistant Klebsiella pneumoniae. J Glob Antimicrob Resist 2020;21:410-413.

13. Geladari A, Simitsopoulou M, Antachopoulos C, Roilides E. Dose-dependent synergistic interactions of colistin with rifampin, meropenem, and tigecycline against carbapenem-resistant Klebsiella pneumoniae biofilms. Antimicrob Agents Chemother 2019;63:e02357-18.

14. Ku YH, Chen CC, Lee MF, Chuang YC, Tang HJ, Yu WL. Comparison of synergism between colistin, fosfomycin and tigecycline against extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates or with carbapenem resistance. J Microbiol Immunol Infect 2017;50:931-939.

15. Kumar M. Colistin and tigecycline resistance in carbapenem-resistant Enterobacteriaceae: checkmate to our last line of defense. Infect Control Hosp Epidemiol 2016;37:624-625.

16. Zhang R, Dong N, Huang Y, et al. Evolution of tigecycline- and colistin-resistant CRKP (carbapenem-resistant Klebsiella pneumoniae) in vivo and its persistence in the GI tract. Emerg Microbes Infect 2018;7:127.

17. Caneiras C, Calisto F, Jorge da Silva G, Lito L, Melo-Cristino J, Duarte A. First description of colistin and tigecycline-resistant Acinetobacter baumannii producing KPC-3 carbapenemase in Portugal. Antibiotics (Basel) 2018;7:96.

18. Cai L, Ju F, Zhang T. Tracking human sewage microbiome in a municipal wastewater treatment plant. Appl Microbiol Biotechnol 2014;98:3317-3326.

19. Newton RJ, McLellan SL, Dila DK, et al. Sewage reflects the microbiomes of human populations. mBio 2015;6:e02574.

20. Hayashi W, Tanaka H, Taniguchi Y, et al. Acquisition of and cocarriage of virulence genes in avian pathogenic Escherichia coli isolates from municipal wastewater influents in Japan. Appl Environ Microbiol 2019;85:e01661-19.

21. Luo Q, Yu W, Zhou K, et al. Molecular epidemiology and colistin resistant mechanism of mcr-positive and mcr-negative clinical isolated Escherichia coli. Front Microbiol 2017;8:2262.

22. Tanaka H, Hayashi W, Iimura M, et al. Wastewater as a probable environmental reservoir of extended-spectrum-β-lactamase genes: detection of chimeric β-lactamases CTX-M-64 and CTX-M-123. Appl Environ Microbiol 2019;85:e01740-19.

23. Fonseca EL, Ramos N da V, Andrade BGN, Morais LLCS, Marin MFA, Vicente ACP. A one-step multiplex PCR to identify Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae in the clinical routine. Diagn Microbiol Infect Dis 2017;87:315-317.

24. Clinical and Laboratory Standards Institute. 2020. Performance standards for antimicrobial susceptibility testing. CLSI document M100-Ed30. Clinical and Laboratory Standards Institute, Wayne, PA.

25. Rebelo AR, Bortolaia V, Kjeldgaard JS, et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro Surveill 2018;23:17-00672.

26. Doi Y, Arakawa Y. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis 2007;45:88-94.

27. Maeyama Y, Taniguchi Y, Hayashi W, et al. Prevalence of ESBL/AmpC genes and specific clones among the third-generation cephalosporin-resistant Enterobacteriaceae from canine and feline clinical specimens in Japan. Vet Microbiol 2018;216:183-189.

28. Cannatelli A, D'andrea MM, Giani T, et al. In vivo emergence of colistin resistance in Klebsiella pneumoniae producing KPC-type carbapenemases mediated by insertional inactivation of the PhoQ/PhoP mgrB regulator. Antimicrob Agents Chemother 2013;57:5521-5526.

29. Bialek-davenet S, Marcon E, Leflon-guibout V, et al. In vitro selection of ramR and soxR mutants overexpressing efflux systems by fluoroquinolones as well as cefoxitin in Klebsiella pneumoniae. Antimicrob Agents Chemother 2011;55:2795-2802.

30. Rodriguez-Bano J, Gutierrez-Gutierrez B, Machuca I, Pascual A. Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin Microbiol Rev 2018;31:e00079-17.

31. Tada T, Uechi K, Nakasone I, et al. Emergence of IncX4 plasmids encoding mcr-1 in a clinical isolate of Klebsiella pneumoniae in Japan. Int J Infect Dis 2018;75:98-100.

32. Sato T, Harada K, Usui M, et al. Tigecycline susceptibility of Klebsiella pneumoniae complex and Escherichia coli isolates from companion animals: the prevalence of tigecycline-nonsusceptible K. pneumoniae complex, including internationally expanding human pathogenic lineages. Microb Drug Resist 2018;24:860-867.

33. Nishida S, Ono Y. Genomic analysis of a pan-resistant Klebsiella pneumoniae sequence type 11 identified in Japan in 2016. Int J Antimicrob Agents 2019;23:105854.

34. Gao P, He S, Huang S, et al. Impacts of coexisting antibiotics, antibacterial residues, and heavy metals on the occurrence of erythromycin resistance genes in urban wastewater. Appl Microbiol Biotechnol 2015;99:3971-3980.

35. Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV. Co-selection of antibiotic and metal resistance. Trends Microbiol 2006;14:176-182.

36. Oliveira da Silva A, Bocio A, Trevilato TMB, Takayanagui AMM, Domingo JL, Segura-Muñoz SI. Heavy metals in untreated/treated urban effluent and sludge from a biological wastewater treatment plant. Environ Sci Pollut Res Int 2007;14:483-489.

37. Dickinson AW, Power A, Hansen MG, et al. Heavy metal pollution and co-selection for antibiotic resistance: A microbial palaeontology approach. Environ Int 2019;132:105117.

38. Shankar C, Pragasam AK, Anandan S, Veeraraghavan B. mgrB as hotspot for insertion sequence integration: change over from multidrug-resistant to extensively drug-resistant Klebsiella pneumoniae. Microb Drug Resist 2019;25:1122-1125.

39. Cannatelli A, Santos-Lopez A, Giani T, Gonzalez-Zorn B, Rossolini GM. Polymyxin resistance caused by mgrB inactivation is not associated with significant biological cost in Klebsiella pneumoniae. Antimicrob Agents Chemother 2015;59:2898-2900.

40. Arena F, Henrici de angelis L, Cannatelli A, et al. Colistin resistance caused by inactivation of the MgrB regulator is not associated with decreased virulence of sequence type 258 KPC carbapenemase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2016;60:2509-2512.

41. Kidd TJ, Mills G, Sá-Pessoa J, et al. A Klebsiella pneumoniae antibiotic resistance mechanism that subdues host defences and promotes virulence. EMBO Mol Med 2017;9:430-447.

42. Fang L, Chen Q, Shi K, et al. Step-wise increase in tigecycline resistance in Klebsiella pneumoniae associated with mutations in ramR, lon and rpsJ. PLoS ONE 2016;11:e0165019.

43. Anyanwu MU, Jaja IF, Nwobi OC. Occurrence and characteristics of mobile colistin resistance (mcr) gene-containing isolates from the environment: a review. Int J Environ Res Public Health 2020;17:1028.

44. Bardhan T, Chakraborty M, Bhattacharjee B. Prevalence of colistin-resistant, carbapenem-hydrolyzing Proteobacteria in hospital water bodies and out-falls of West Bengal, India. Int J Environ Res Public Health 2020;17:1007.

参考文献をもっと見る