リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on Chemistry of Diphosphenes Bearing 1,1'-Binaphthyl Groups: Synthesis, Complexation, and Catalytic Activities」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on Chemistry of Diphosphenes Bearing 1,1'-Binaphthyl Groups: Synthesis, Complexation, and Catalytic Activities

浦 里華子 大阪府立大学 DOI:info:doi/10.24729/00017774

2022.07.21

概要

Phosphorus chemistry has rapidly advanced in the last two decades due to a plethora of intriguing properties, such as coordination ability to transition metals and their chiral environments.1 Trivalent organophosphorus compounds, such as phosphine, phosphite, and phosphoramidite, are some of the most intensively investigated compounds as ligands because of their strong coordination ability to transition metals and/or their chiral environments derived from the high inversion barrier. The development of new ligands that exhibit high catalytic activities has posed a continuous challenge in modern organic syntheses.

In phosphorus chemistry, not only trivalent organophosphorus compounds but low- coordinate phosphorus species, such as phosphaalkenes, phosphinines, phosphaalkynes, diphosphenes, also have been investigated. 2 These species have low-lying LUMO level derived from the π* orbital of the multiple bond between phosphorus atom and carbon atom or phosphorus atoms. Therefore, these are promising candidates for ligands of transition metal catalyzed reactions. In fact, phosphaalkene ligands, and phosphinine ligands are utilized in transition-metal-catalyzed organic transformations including asymmetric reactions. 3,4a,b,5

Diphosphene having a P=P double bond in the molecule is also a promising candidate due to its significantly low-lying P=P π* orbital,6,7 which should enhance the π-accepting character of the transition metal. A variety of diphosphene transition-metal complexes featuring η1- or η2-type coordination modes have been explored6a,d,8 even before the isolation of the first example of diphosphene, Mes*P=PMes* (Mes* = 2,4,6-tri-tert-butylphenyl).9 In 2009, Protasiewicz and co- workers reported the first isolation of the gold(I) complexes of Mes*P=PMes*, where one or both lone pairs on the phosphorus atoms coordinate to the gold atoms in an η1-fashion.10 However, it has never been investigated for the use of a diphosphene complex as a ligand for catalytic organic transformations.11 The author have developed diphosphene ligands bearing 1,1’-binaphtyhl group to apply to transition metal catalyzed reactions. In this chapter, the author describe diphosphenes, calatytic reaction using low-coordinated phosphorus ligands.

この論文で使われている画像

参考文献

1. Organophosphorus Chemistry: From Molecules to Applications, ed. V. Iaroshenko, Wiley-VCH, 2019; (b) Phosphorus: Chemistry, Biochemistry and Technology 6th, ed. D. E. C. Corbridge, CRC Press Taylor & Francis Group, 2013; (c) Phosphorus(III) Ligands in Homogenous Catalysis: Design and Synthesis, eds.: P. C. J.; Kamer and P. W. N. M. van Leeuwen, Wiley, 2012; (d) Phosphorus Ligands in Asymmetric Catalysis, ed. A. Börner, Wiley-VCH, 2008.

2. F. Mathey, Angew. Chem., Int. Ed., 2003, 42, 1578-1604; (b) P. Le Floch, Coord. Chem. Rev., 2006, 250, 627-681; (c) C. Müller and D. Vogt, Dalton Trans., 2007, 5505-5523; (d) N. T. Coles, A. Sofie Abels, J. Leitl, R. Wolf, H. Grützmacher and C. Müller, Coord. Chem. Rev., 2021, 433, 213729.

3. A.-M. Caminade, J.-P. Majoral and R. Mathieu, Chem. Rev., 1991, 91, 575-612; (b) M. Donath, F. Hennersdorf and J. J. Weigand, Chem. Soc. Rev., 2016, 45, 1145-1172.

4. E. M. H. Krautscheid, I. Kovacs, G. Fritz and J. Pikies, Z. Anorg. Allg. Chem., 1997, 623, 1917- 1923; (b) J. Olkowska-Oetzel and J. Pikies, Adv. Organometal. Chem., 2003, 17, 28-35; (c) W. Domańska-Babul, J. Chojnacki, E. Matern and J. Pikies, Dalton Trans., 2009, 146-151; (d) M. Zauliczny, A. Ordyszewska, J. Pikies and R. Grubba, Eur. J. Inorg. Chem., 2018, 3131-3141.

5. M. Scheer, C. Kuntz, M. Stubenhofer, M. Linseis, R. F. Winter and M. Sierka, Angew. Chem. Int. Ed., 2009, 48, 2600-2604; (b) V. Mirabello, M. Caporali, L. Gonsalvi, G. Manca, A. Ienco and M. Peruzzini, Chem. Asian J., 2013, 8, 3177-3184.

6. F. Cecconi, C. A. Ghilardi, S. Midollini and A. Orlandini, J. Am. Chem. Soc. 1984, 106, 3668- 3670; (b) A. R. Fox, R. J. Wright, E. Rivard and P. P. Power, Angew. Chem. Int. Ed., 2005, 44, 7729-7733.

7. O. J. Scherer and T. Brück, Angew. Chem., Int. Ed. Engl., 1987, 26, 59; (b) O. J. Scherer, J. Vondung and G. Wolmershäuser, Angew. Chem., Int. Ed. Engl., 1989, 28, 1355-1357; (c) B. M. Cossairt, N. A. Piro and C. C. Cummins, Chem. Rev., 2010, 110, 4164–4177; (d) M. Caporali, L. Gonsalvi, A. Rossin and M. Peruzzini, Chem. Rev., 2010, 110, 4178–4235; (e) C. M. Hoidn, D. J. Scott and R. Wolf, Chem. - Eur. J. 2021, 27, 1886-1902; (f) L. Giusti, V. R. Landaeta, M. Vanni, J. A. Kelly, R. Wolf and M. Caporali, Coord. Chem. Rev., 2021, 441, 213927.

8. L. Weber, Chem. Rev., 1992, 92, 1839-1906; (b) T. Sasamori and N. Tokitoh, Dalton Trans. 2008, 1395-1408; (c) R. C. Fischer and P. P. Power, Chem. Rev., 2010, 110, 3877-3923; (d) M. C. Simpson and J. D. Protasiewicz, Pure Appl. Chem., 2013, 85, 801-815; (e) M. Yoshifuji, Eur. J. Inorg. Chem., 2016, 607-615.

9. J. C. Green, M. L. H. Green and G. E. Morris, J. Chem. Soc., Chem. Commun., 1974, 212-213; (b) P. S. Elmes, M. L. Scudder and B. O. West, J. Organomet. Chem., 1976, 122, 281-288; (c) M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu and T. Higuchi, J. Am. Chem. Soc., 1981, 103, 4587-4589.

10. I. G. Phillips, R. G. Ball and R. G. Cavell, Inorg. Chem., 1992, 31, 1633-1641; (b) D. Fenske and H. Schottmüller, Z. Anorg. Allg. Chem., 1998, 624, 443-451; (c) J. Chatt, P. B. Hitchcock, A. Pidcock, C. P. Warrens and K. R. Dixon, J. Chem. Soc., Chem. Commun., 1982, 932-933; (d) J. Chatt, P. B. Hitchcock, A. Pidcock, C. P. Warrens and K. R. Dixon, J. Chem. Soc., Dalton. Trans., 1984, 2237-2244; (e) S. Gomez-Ruiz and E. Hey-Hawkins, Dalton Trans., 2007, 5678- 5683; (f) B. A. Surgenor, M. Bühl, A. M. Z. Slawin, J. D. Woollins and P. Kilian, Angew. Chem. Int. Ed., 2012, 51, 10150-10153; (g) B. A. Surgenor, B. A. Chalmers, K. S. Athukorala Arachchige, A. M. Z. Slawin, J. D. Woollins, M. Bühl and P. Kilian, Inorg. Chem., 2014, 53, 6856-6866; (h) S. C. Kosnik, J. F. Binder, M. C. Nascimento, A. Swidan and C. L. B. Macdonald, Chem. Eur. J., 2019, 25, 1208-1211.

11. There are reports on diphosphene-platinum(II) complexes synthesized by the reaction of ArFP=PArF (ArF = 2,4,6-(CF3)3C6H2) with [Pt(PEt3)Cl(μ-Cl)]2. (a) K. B. Dillon and H. P. Goodwin, J. Organomet. Chem., 1992, 429, 169-171; (b) K. B. Dillon, M. A. Fox, V. C. Gibson, H. P. Goodwin and L. J. Sequeira, J. Organomet. Chem., 2017, 830, 113-119.

12. A. Tsurusaki, R. Ura and K. Kamikawa, Dalton Trans., 2018, 47, 4437-4441; (b) A. Tsurusaki, R. Ura and K. Kamikawa, Organometallics, 2020, 39, 87-92.

13. F. Ozawa and M. Yoshifuji, Dalton Trans., 2006, 4987-4995; (b) O. Daugulis, M. Brookhart and P. S. White, Organometallics, 2002, 21, 5935-5943; (c) A. Hayashi, M. Okazaki and F. Ozawa, Organometallics, 2007, 26, 5246-5249; (d) J. Dugal-Tessier, G. R. Dake and D. P. Gates, Organometallics, 2007, 26, 6481-6486.

14. (a) A. Bréque, C. C. Santini, F. Mathey, J. Fischer and A. Mitschler, Inorg. Chem., 1984, 23, 3463-3467; (b) B. Schmid, L. M. Venanzi, A. Albinati and F. Mathey, Inorg. Chem., 1991, 30, 4693-4699; (c) A. Campos-Carrasco, L. E. Broeckx, J. J. Weemers, E. A. Pidko, M. Lutz, A. M. Masdeu-Bultó, D. Vogt and C. Müller, Chem. Eur. J., 2011, 17, 2510-2517. (d)M. Yoshifuji, N. Shinohara and K. Toyota, Tetrahedron Lett. 1996, 37, 7815-7818; (e) C. Dutan, S. Shah, R. C. Smith, S. Choua, T. Berclaz, M. Geoffroy and J. D. Protasiewicz, Inorg. Chem., 2003, 42, 6241- 6251; (f) R. C. Smith and J. D. Protasiewicz, J. Am. Chem. Soc., 2004, 126, 2268-2269; (g) Rhett C. Smith and J. D. Protasiewicz, Eur. J. Inorg. Chem., 2004, 998-1006; (h) C. Moser, M. Nieger and R. Pietschnig, Organometallics, 2006, 25, 2667-2672; (i) N. Nagahora, T. Sasamori, Y. Watanabe, Y. Furukawa and N. Tokitoh, Bull. Chem. Soc. Jpn., 2007, 80, 1884-1900; (j) A. Tsurusaki, N. Nagahora, T. Sasamori, K. Matsuda, Y. Kanemitsu, Y.

15. Watanabe, Y. Hosoi, Y. Furukawa and N. Tokitoh, Bull. Chem. Soc. Jpn., 2010, 83, 456-478.

16. K. Sato, Y. Inoue, T. Mori, A. Sakaue, A. Tarui, M. Omote, I. Kumadaki and A. Ando, Org. Lett., 2014, 16, 3756-3759.

17. The use of NaBArF was essential for the formation of bidentate palladium complex, other additives such as silver salts (AgOTf, AgSbF6 and AgNTf2) and NaBPh4 were not suitable for the formation of bidentate complexes leading to the complicated mixture or no change.

18. NMR in Organometallic Chemistry. P. S. Pregosin, Wiley-VCH, 2012.

19. No reaction occurred by the mixture of the equimolar amount of diphosphene 2 and PtCl2(cod) in a CD2Cl2 solution at room temperature. (a) E. Lindner, M. Stängle, W. Hiller and R. Fawzi, Chem. Ber., 1989, 122, 823-827; (b) L. Weber, G. Noveski, H.-G. Stammler and B. Neumann, Z. Anorg. Allg. Chem., 2007, 633, 994-999; (c) E. Lindner, T. Funk, W. Hiller and R. Fawzi, J. Organomet. Chem., 1991, 411, 491-500; (d) Ł. Ponikiewski, A. Ziółkowska, M. Zauliczny and J. Pikies, Polyhedron, 2017, 137, 182-187; (e) P. M. Scheetz, D. S. Glueck and A. L. Rheingold, Organometallics, 2017, 36, 3387-3397.

20. B. K. Schmiedeskamp, J. G. Raising, W. Malisch, K. Hindahl, R. Schemm and W. S. Sheldrick, Organometallics, 1995, 14, 4446-4448; (b) A. Wiśniewska, K. Baranowska, R. Grubba, E. Matern and J. Pikies, Z. Anorg. Allg. Chem. 2010, 636, 1549-1556; (c) A. Ordyszewska, N. Szynkiewicz, J. Chojnacki, J. Pikies and R. Grubba, Inorg. Chem., 2020, 59, 5463-5474.

21. D. Lungu, C. Daniliuc, P. G. Jones, L. Nyulászi, Z. Benkõ, R. Bartsch and W.-W. du Mont, Eur. J. Inorg. Chem., 2009, 2901-2905; (b) G. S. Day, B. Pan, D. L. Kellenberger, B. M. Foxman and C. M. Thomas, Chem. Commun., 2011, 47, 3634-3636.

22. M. A. Zhuravel and D. S. Glueck, Organometallics, 2002, 21, 3208-3214.

23. The stabilization energy of the coordination of phosphine moiety including the P4 atom was estimated to be ca. 6 kcal mol−1 from the relative energy difference between compounds Int-3 and 8A (Figure 5).

24. NBO 6.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis and F. Weinhold.

S1. A. Tsurusaki, R. Ura and K. Kamikawa, Dalton Trans., 2018, 47, 4437-4441.

S2. (a) J. A. Osborn, F. H. Jardine, J. F. Young and G. Wilkinson, J. Chem. Soc. A, 1966, 1711-1732. (b) J. A. Osborn, G. Wilkinson and J. J. Mrowca, Inorg. Synth., 1967, 10, 67-71.

S3. (a) M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu and T. Higuchi, J. Am. Chem. Soc., 1981, 103, 4587-4589. (b) E. Öberg, B. Schäfer, X.-L. Geng, J. Pettersson, Q. Hu, M. Kritikos, T. Rasmussen and S. Ott, J. Org. Chem., 2009, 74, 9265-9273.

S4. D. A. White, J. R. Doyle and H. Lewis, Inorg. Synth., 1972, 13, 55-65.

S5. J. Wiedermann, K. Mereiter and K. Kirchner, J. Mol. Catal. A: Chem., 2006, 257, 67-72.

S6. K. Sato, Y. Inoue, T. Mori, A. Sakaue, A. Tarui, M. Omote, I. Kumadaki and A. Ando, Org. Lett., 2014, 16, 3756-3759.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る