リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of a lagrange-Monte-Carlo scheme for 3D plasma fluid simulation in fusion edge plasmas (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of a lagrange-Monte-Carlo scheme for 3D plasma fluid simulation in fusion edge plasmas (本文)

巽, 瞭子 慶應義塾大学

2020.03.23

概要

Nuclear fusion is a promising candidate for a new energy resource. One issue for magnetic- confinement fusion reactors is enormous amount of particle and heat loads onto the machine inner-walls. In order to keep the loads in manageable level, plasma fluid simulation in edge region, so-called Scrape-Off-Layer (SOL), plays a key role. The simulation has mainly been done with two-dimensional (2D) plasma fluid codes, however, a three-dimensional (3D) plasma fluid code is required to simulate non-axisymmetric configurations of the machines. Extension of current numerical schemes in the 2D codes, such as a finite volume scheme (FV), is difficult due to the following unique characteristics of SOL plasma; 1) Different mechanism of the transport depending on the direction to the magnetic field, 2) Different dominant mechanism between the transport of particles, momentum and energy, and 3) Presence of sheath at the wall imposing complex boundary conditions. Therefore, the purpose of this study is to develop a new 3D simulation scheme for SOL/divertor plasma. By developing a Lagrange–Monte-Carlo scheme as the new scheme, the study has established a basis for 3D simulation of SOL plasma in fusion devices. The thesis is constructed as follows.

Chapter 1 describes the background and purpose of this study. Chapter 2 introduces basic equations for the plasma and neutral particles in the SOL.

Chapter 3 focuses on the Monte-Carlo scheme (MC). After describing basic theory of MC, two matters regarding MC are discussed. One is the ways to set boundary conditions. By solving a simple diffusion equation with MC, valid numerical treatments for Dirichlet and Neumann conditions have been clarified. The other one is the way to solve the energy equation, more specifically, the conduction equation. The raised issues are the effects of background density profiles, mixed weights of the pseudo fluid particles, and so on. Through some tests regarding each issue, validity of the algorithm solving the conduction equation has been confirmed under the use of fine-enough mesh.

Chapter 4 introduces the Lagrange scheme (LG). Since MC is originally for diffusive problems, its applicability to convective problems is unclear. Therefore, a pure-convective problem was calculated by MC and also by LG. As a result, MC obtained unphysical numerical solution while LG obtained the correct physical solution. Semi-implicit treatment of the pressure gradient term is the key factor of the success in LG.This was the starting point of LG and the last half of Chap. 4 describes further development and consideration on LG.

Chapter 5 describes numerical algorithm and results of the Lagrange–Monte-Carlo scheme (LG-MC). LG-MC integrates LG for the convective part and MC for the diffusive part. After coupling MC and LG, validity of LG-MC has been confirmed by a 1D benchmark test. Finally, by extending the LG-MC code to a 3D cylindrical geometry, applicability of LG-MC to 3D geometries has been confirmed.

Chapter 6 concludes the thesis, with giving future steps of this study.

この論文で使われている画像

参考文献

[1] https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy- economics/statistical-review/bp-stats-review-2019-full-report.pdf (2019/11/26).

[2] JET team. Fusion Energy Production From a Deuterium-Tritium Plasma in the JET Tokamak. Nuclear Fusion, 32(2):187–203, 1992.

[3] Y. Kamada, S. Ishida, T. Ozeki, and M. Kikuchi. Achievement of break even condition in JT-60 and prospect for nuclear fusion reactor. Nippon Genshiryoku Gakkai-Shi, 39(5):367–377, 1997.

[4] A C C Sips, for the Steady State Operation, and the Transport Physics topical groups of the International Tokamak Physics Activity. Advanced scenarios for ITER operation. Plasma Physics and Controlled Fusion, 47:A19–A40, 2005.

[5] Y. Xu. A general comparison between tokamak and stellarator plasmas. Matter and Radiation at Extremes, 1:192–200, 2016.

[6] R. A. Pitts. Status and physics basis of the ITER divertor. Physica Scripta, T138:1–10, 2009.

[7] A. Hatayama. Present status of numerical simulation for divertor plasma. Purazuma, Kaku Yugo Gakkai-Shi, 77(5):420–434, 2001.

[8] K -U Riemann. The Bohm criterion and sheath formation. Journal of Physics D: Applied Physics, 24:493–518, 1991.

[9] K. Hoshino. Divertor Experiment and Modeling on Detached Plasma and Power/Particle Handling. Purazuma, Kaku Yugo Gakkai-Shi, 92(12).

[10] S. I. Braginskii. Transport processes in a plasma. Reviews of plasma physics, 1:205, 1965.

[11] Suhas V. Patankar. Numerical Heat Transfer and Fluid Flow. McGraw-Hill Inc., 1980.

[12] B.J. Braams. A multi-fluid code for simulation of the edge plasma in tokamaks. Controlled Thermonuclear Fusion Research, NET Report Nr. 68, 1987.

[13] D. Reiter. Progress in two-dimensional plasma edge modelling. Journal of Nuclear Materials, 196-198:80–89, 1992.

[14] R. Schneider, X. Bonnin, K. Borrass, D. P. Coster, H. Kastelewicz, D. Reiter, V. A. Rozhansky, and B. J. Braams. Plasma Edge Physics with B2-Eirene. Contributions to Plasma Physics, 46:3–191, 2006.

[15] A. S. Kukushkin, H. D. Pacher, V. Kotov, G. W. Pacher, and D. Reiter. Finalizing the ITER divertor design: The key role of SOLPS modeling. Fusion Engineering and Design, 86:2865–2873, 2011.

[16] V. Rozhansky, S. Voskoboynikov, E. Kovaltsova, D. Coster, and R. Schneider. Perpendicular Conductivity and Self-Consistent Electric Fields in Tokamak Edge Plasma. Contributions to Plasma Physics, 40:423430, 2000.

[17] V. Rozhansky, S.P. Voskoboynikova, E.G. Kaveevaa, D.P. Costerb, and R. Schneider. Simulation of tokamak edge plasma including self-consistent electric fields. Nuclear Fusion, 41(4):387401, 2001.

[18] R. Schneider, D. Coster, B. Braams, P. Xantopoulos, V. Rozhansky, S. Voskoboynikov, L. Kovaltsova, and H. Bürbaumer. B2-solps5.0: SOL transport code with drifts and currents. Contributions to Plasma Physics, 40:328333, 2000.

[19] X. Bonnin, W. Dekeyser, R. Pitts, D. Coster, S. Voskoboynikov, and S. Wiesen. Presentation of the New SOLPS-ITER Code Package for Tokamak Plasma Edge Modelling. Plasma and Fusion Research, 11:1403102, 2016.

[20] K. Shimizu, T. Takizuka, K. Ohya, K. Inai, T. Nakano, A. Takayama, H. Kawashima, and K. Hoshino. Kinetic modelling of impurity transport in detached plasma for integrated divertor simulation with SONIC (SOLDOR/NEUT2D/IMPMC/EDDY). Nuclear Fusion, 49(6):065028, 2009.

[21] H. Kawashima, K. Shimizu, T. Takizuka, S. Sakurai, T. Nakano, N. Asakura, and T. Ozeki. Development of integrated sol/divertor code and simulation study in jaea. Plasma and Fusion Research, 1, 2006.

[22] T. D. Rognlien, P. N. Brown, R. B. Campbell, T. B. Kaiser, D. A. Knoll, P. R. McHugh, G. D. Porter, M. E. Rensink, and G. R. Smith. 2-D Fluid Transport Simulations of Gaseous/Radiative Divertors. Contributions to Plasma Physics, 34:362–367, 1994.

[23] G. J. Radford, A. V. Chankin, G. Corrigan, R. Simonini, J. Spence, and A. Taroni. The Particle and Heat Drift Fluxes and their Implementation into the EDGE2D Transport Code. Contributions to Plasma Physics, 36:187–191, 1996.

[24] D. Reiter, Chr. May, D. Coster, and R. Schneider. Time dependent neutral gas transport in tokamak edge plasmas. Journal of Nuclear Materials, 220-222:987–992, 1995.

[25] M. Wischmeier, M. Groth, A. Kallenbach, A. V. Chankin, D. P. Coster, R. Dux, A. Herrmann, H. W. Müller, R. Pugno, D. Reiter, A. Scarabosio, J. G. Watkins, DIII-D team, and ASDEX Upgrade team. Current understanding of divertor detachment: Experiments and modelling. Journal of Nuclear Materials, 390-391:250–254, 2009.

[26] L. Aho-Mantila, M. Wischmeier, H. W. Muller, S. Potzel, D. P. Coster, X. Bonnin3, G. D. Conway, and the ASDEX Upgrade Team. Outer divertor of ASDEX Upgrade in low-density L-mode discharges in forward and reversed magnetic field: I. Comparison between measured plasma conditions and SOLPS5.0 code calculations. Nuclear Fusion, 52(10):103006, 2012.

[27] R.A. Pitts, X. Bonnin, F. Escourbiac, H. Frerichs, J. P. Gunn, T. Hirai, A. S. Kukushkin, E. Kaveeva, M. A. Miller, D. Moulton, V. Rozhansky, I. Senichenkov, E. Sytova, O. Schmitz, P. C. Stangeby, G. De Temmerman, I. Veselova, and S. Wiesen. Physics basis for the first ITER tungsten divertor. Nuclear Materials and Energy, 20:100696, 2019.

[28] Y. Feng, F. Sardei, and J. Kisslinger, and P. Grigull. 3D Monte Carlo code for plasma transport in island divertors. Journal of Nuclear Materials, 241-243:930–934, 1997.

[29] F. Sardei, Y. Feng, P. Grigull, G. Herre, D. Hildebrandt, J. V. Hofmann, J. Kisslinger, R. Brakel, J. Das, J. Geiger, O. Heinrich, G. Kühner, H. Niedermeyer, D. Reiter, M. Richter-Glötzl, A. Runov, R. Schneider, U. Stroth, H. Verbeek, F. Wagner, R.Wolf, W7-AS Team, and NBI Group. Island divertor studies on W7-AS. Journal of Nuclear Materials, 241-243(11):135–148, 1997.

[30] Y. Feng, F. Sardei, P. Grigull, K. McCormick, J. Kisslinger, and D. Reiter. Physics of island divertors as highlighted by the example of W7-AS. Nuclear Fusion, 46(8):807– 819, 2006.

[31] Y. Feng, F. Sardei, P. Grigull, K. McCormick, J. Kisslinger, D. Reiter, and Y. Igitkhanov. Transport in island divertors: physics, 3D modelling and comparison to first experiments on W7-AS*. Plasma Physics and Controlled Fusion, 44(5):611–625, 2002.

[32] Y. Feng, F. Sardei, J. Kisslinger, P. Grigull, K. McCormick, and D. Reiter. 3D Edge Modeling and Island Divertor Physics. Contributions to Plasma Physics, 44:57–69, 2004.

[33] A. M. Runov, D. Reiter, S. V. Kasilov, M. F. Heyn, and W. Kernbichler. Monte Carlo study of heat conductivity in stochastic boundaries: Application to the TEXTOR ergodic divertor. Physics of Plasmas, 8(3):916–929, 2001.

[34] A. Runov, S. Kasilov, J. Riemann, M. Borchardt, D. Reiter, and R. Schneider. Benchmark of the 3-Dimensional Plasma Transport Codes E3D and BoRiS. Contributions to Plasma Physics, 42:169–174, 2002.

[35] A. Runov, S. V. Kasilov, N. McTaggart, R. Schneider, X. Bonnin, R. Zagórski, and D. Reiter. Transport modelling for ergodic configurations. Nuclear Fusion, 44(6):S74–S82, 2004.

[36] A. Runov, S. V. Kasilov, R. Schneider, and D. Reiter. Extensions of the 3-Dimensional Plasma Transport Code E3D. Contributions to Plasma Physics, 44:18–24, 2004.

[37] A. Runov, S. V. Kasilov, R. Schneider, and D. Reiter. 3D Monte Carlo modelling of edge plasmas in fusion experiments. Journal of Plasma Physics, 72(6):1109–1112, 2006.

[38] R. Schneider, M. Borchardt, J. Riemann, A. Mutzke, and S. Weber. Concept and Status of a 3D SOL Fluid Code. Contributions to Plasma Physics, 40:340–345, 2000.

[39] M. Borchardt, J. Riemann, R. Schneider, and X. Bonnin. W7-X edge modeling with the 3D SOL fluid code BoRiS. Journal of Nuclear Materials, 290-293:546–550, 2001.

[40] J. Riemann, M. Borchardt, R. Schneider, X.Bonnin, A. Mutzke, T. Rognlien, and M. Umansky. Hierarchy tests of edge transport models (BoRiS, UEDGE). Journal of Nuclear Materials, 313-316:1030–1035, 2003.

[41] Y. Feng and J. Kisslinger. Status and Application of the EMC3/EIRENE Code. Contributions to Plasma Physics, 40:271275, 2000.

[42] D. Harting, S. Wiesen, H. Frerichs, D. Reiter, P. Börner, Y. Feng, and JET-EFDA contributors. Validating the 3D edge code EMC3-EIRENE against 2D simulations with EDGE2D-EIRENE for JET single null configurations. Journal of Nuclear Materials, 415:S540–S544, 2011.

[43] Y. Feng, F. Sardei, and J. Kisslinger. A simple highly accurate field-line mapping technique for three-dimensional Monte Carlo modeling of plasma edge transport. Physics of Plasmas, 12:052505, 2005.

[44] H. Frerichs, D. Reiter, Y. Feng, and D. Harting. Block-structured grids in Lagrangian 3D edge plasma transport simulations. Computer Physics Communications, 181:61–70, 2010.

[45] M. Kobayashi, Y. Feng, I. Yamada, H. Hayashi, and G. Kawamura. Benchmark of Monte Carlo Scheme of EMC3 Dealing with Non-Uniform Cross-Field Transport Coefficients and Implementation in LHD. Contributions to Plasma Physics, 54:383– 387, 2014.

[46] G. Kawamura, Y. Feng, M. Kobayashi, M. Shoji, T. Morisaki, S. Masuzaki, and Y. Tomita. First EMC3-EIRENE Simulations with Divertor Legs of LHD in Realistic Device Geometry. Contributions to Plasma Physics, 54:437–441, 2014.

[47] Y. Feng, H. Frerichs, M. Kobayashi, A. Bader, F. Effenberg, D. Harting, H. Hoelbe, J. Huang, G. Kawamura, J. D. Lore, T. Lunt, D. Reiter, O. Schmitz, D. Sharma. Recent Improvements in the EMC3-Eirene Code. Contributions to Plasma Physics, 54:426–431, 2014.

[48] Y. Feng, H. Frerichs, M. Kobayashi, and D. Reiter. Monte-Carlo fluid approaches to detached plasmas in non-axisymmetric divertor configurations. Plasma Physics and Controlled Fusion, 59:034006, 2017.

[49] H. Zohm. The physics of edge localized modes (ELMs) and their role in power and particle exhaust. Plasma Physics and Controlled Fusion, 38(8):105–128, 1996.

[50] T.E. Evans, M. E. Fenstermacher, R. A. Moyer, T. H. Osborne, J. G. Watkins, P. Gohil, I. Joseph, M. J. Schaffer, L. R. Baylor, M. Bécoulet, J. A. Boedo, K. H. Burrell, J. S. deGrassie, K. H. Finken, T. Jernigan, M. W. Jakubowski, C. J. Lasnier, M. Lehnen, A. W. Leonard, J. Lonnroth, E. Nardon, V. Parail, O. Schmitz, B. Unterberg, and W. P. West. RMP ELM suppression in DIII-D plasmas with ITER similar shapes and collisionalities. Nuclear Fusion, 48(2):024002, 2008.

[51] Y. Liu, C J Ham, A Kirk, Li Li, A Loarte, D A Ryan, Youwen Sun, W Suttrop, Xu Yang, and Lina Zhou. ELM control with RMP: plasma response models and the role of edge peeling response. Plasma Physics and Controlled Fusion, 58(11):114005, 2016.

[52] https://www.iter.org/newsline/-/3254(2019/10/25).

[53] Francis H. Harlow. PIC and its Progeny. Computer Physics Communications, 48:1–10, 1988.

[54] Martha W. Evans and Francis H. Harlow. The Particle-In-Cell Method for Hydrodynamic Calculations. LA-2139 Physics and Mathematics, 1957.

[55] J. J. Monaghan. Smoothed Particle Hydrodynamics. Annual review of astronomy and astrophysics, 30:543–574, 1992.

[56] M. Fujisawa. Basics of physical simulation for CG. Mynavi-Publication, 2013.

[57] Per Helander and Dieter J. Sigmar. Collisional Transport in Magnetized Plasmas. Cambridge University Press, 2002.

[58] C. W. Gardiner. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer, 1985.

[59] Y. Feng, T. Lunt, F. Sardei, and X. Zha. Implicit coupling of impurity transport at the SOL–core interface. Computer Physics Communications, 184:1555–1561, 2013.

[60] K. Terasawa. Fundamentals of Mathematics for Scientists, -Applications-. Iwanami- Shoten (in Japanese), 1974.

[61] Y. Nakashima, K. Ichimura, M. S. Islam, M. Sakamoto, N. Ezumi, M. Hirata, M. Ichimura, R. Ikezoe, T. Imai, and T. Kariya. Recent progress of divertor simulation research using the GAMMA 10/PDX tandem mirror. Nuclear Fusion, 57(11):116033, 2017.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る