リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Anti-Allergic Activity of Fucoidan Can Be Enhanced by Coexistence with Quercetin」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Anti-Allergic Activity of Fucoidan Can Be Enhanced by Coexistence with Quercetin

Mizuno, Masashi Fujioka, Asuka Bitani, Shiho Minato, Ken-ichiro Sakakibara, Hiroyuki 神戸大学

2022.10

概要

In recent years, the incidence of type I hypersensitivity including hay fever has been increasing year by year in Japan. Our previous study using mice showed that only oral, but not intraperitoneal, administration of fucoidan extracted from seaweed (Saccharina japonica) suppressed type I hypersensitivity by secretion of galectin-9, which has a high affinity for IgE in the blood. However, the amount of seaweed required to achieve this activity is quite high (12 g dry weight per person per day). Therefore, the purpose of this study was to search for food ingredients in vegetables that enhance type I hypersensitivity suppression effect when consumed together with fucoidan. As a result, the enhanced effect was observed in extracts from Welsh onions and onions among vegetables. When we compared the polyphenols in the vegetables that showed activity with those that did not, flavonols such as quercetin and kaempferol were found as candidates. When quercetin or kaempferol (100 μg each) were orally administered at the same time, even at amounts where fucoidan alone showed no anti-allergic activity, anti-allergic effects were observed. More interestingly, when both flavonols were combined and administered simultaneously at half the amount of each of the above flavonols (50 μg), while the fucoidan amount remained the same, a similar effect was observed as when each flavonol (100 μg) was administered alone. The simultaneous intake of fucoidan and vegetables containing high contents of quercetin or kaempferol may reduce fucoidan intake while maintaining the allergy suppression effect, suggesting the importance of food combination.

参考文献

1. Palanisamy, S.; Vinosha, M.; Marudhupandi, T.; Rajasekar, P.; Prabhu, N.M. Isolation of fucoidan from Sargassum polycystum brown algae: Structural characterization, in vitro antioxidant and anticancer activity. Int. J. Biol. Macromol. 2017, 102, 405–412. [CrossRef] [PubMed]

2. Li, B.; Lu, F.; Wei, X.; Zhao, R. Fucoidan: Structure and bioactivity. Molecules 2008, 13, 1671–1695. [CrossRef]

3. Cumashi, A.; Ushakova, N.A.; Preobrazhenskaya, M.E.; D’Incecco, A.; Piccoli, A.; Totani, L.; Tinari, N.; Morozevich, G.E.; Berman, A.E.; Bilan, M.I.; et al. Consorzio Interuniversitario Nazionale per la Bio-Oncologia, Italy, A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 2007, 17, 541–552. [CrossRef] [PubMed]

4. Vishchuk, O.S.; Ermakova, S.P.; Zvyagintseva, T.N. The effect of sulfated (1→3)-α-L-fucan from the brown alga Saccharina cichorioides miyabe on resveratrol-induced apoptosis in colon carcinoma cells. Mar. Drugs 2013, 11, 194–212. [CrossRef]

5. Nishino, T.; Nagumo, T.; Kiyohara, H.; Yamada, H. Structural characterization of a new anticoagulant fucan sulfate from the brown seaweed Ecklonia kurome. Carbohyd. Res. 1991, 211, 77–90. [CrossRef]

6. Luthuli, S.; Wu, S.; Cheng, Y.; Zheng, X.; Wu, M.; Tong, H. Therapeutic effects of fucoidan: A review on recent studies. Mar. Drugs 2019, 17, 487. [CrossRef] [PubMed]

7. Zhang, W.; Oda, T.; Yu, Q.; Jin, J.O. Fucoidan from Macrocystis pyrifera has powerful Immune-modulatory effects compared to three other fucoidans. Mar. Drugs 2015, 13, 1084–1104. [CrossRef]

8. Maruyama, H.; Tamauchi, H.; Hashimoto, M.; Nakano, T. Suppression of Th2 immune responses by Mekabu fucoidan from Undaria pinnatifida sporophylls. Int. Arch. Aller. Immunol. 2005, 137, 289–294. [CrossRef]

9. Iwamoto, K.; Hiragun, T.; Takahagi, S.; Yanase, Y.; Morioke, S.; Mihara, S.; Kameyoshi, Y.; Hide, M. Fucoidan suppresses IgE production in peripheral blood mononuclear cells from patients with atopic dermatitis. Arch. Dermatol. Res. 2011, 303, 425–431. [CrossRef] [PubMed]

10. Tanino, Y.; Hashimoto, T.; Ojima, T.; Mizuno, M. F-fucoidan from Saccharina japonica is a novel inducer of galectin-9 and exhibits anti-allergic activity. J. Clin. Biochem. Nutr. 2016, 59, 25–30. [CrossRef]

11. Mizuno, M.; Sakaguchi, K.; Sakane, I. Oral administration of fucoidan can exert anti-allergic activity after allergen sensitization by enhancement of galectin-9 secretion in blood. Biomolecules 2020, 10, 258. [CrossRef]

12. Chakrabarti, M.; Ray, S.K. Synergistic anti-tumor actions of luteolin and silibinin prevented cell migration an invasion and induced apoptosis in glioblastoma SNB19 cells and glioblastoma stem cells. Brain Res. 2015, 1629, 85–93. [CrossRef]

13. Mizuno, M.; Yamashita, S.; Hashimoto, T. Enhancement of anti-inflammatory and anti-allergic activities with combination of luteolin and quercetin in in vitro co-culture system. Food Sci. Technol. Res. 2017, 23, 811–818. [CrossRef]

14. Han, L.; Sakane, I.; Mizuno, M. Synergistic anti-allergy activity using combination of Enterococcus faecalis IC-1 and luteolin. Food Biosci. 2021, 41, 100924. [CrossRef]

15. Ovary, Z. In vitro and in vivo interaction of anti-hapten antibodies with monovalent and bivalent haptens. In Conceptual Advances in Immunology and Oncology; Cumley, R.W., Aldridge, D.M., MacCay, J.H.J., Eds.; Harvert Medical Division, Harper and Row: New York, NY, USA, 1963; pp. 206–219.

16. Singh, A.; Holvoet, S.; Mercenier, A. Dietary polyphenols in the prevention and treatment of allergic diseases. Clin. Exp. Allergy 2011, 41, 1346–1359. [CrossRef]

17. Kimata, M.; Shichijo, M.; Miura, T.; Serizawa, I.; Inagaki, N.; Nagai, H. Effects of luteolin, quercetin and baicalein on immunoglob- ulin E-mediated mediator release from human cultured mast cells. Clin. Exp. Allergy 2000, 30, 501–508. [CrossRef]

18. Cruz, E.A.; Reuter, S.; Martin, H.; Dehzad, N.; Muzitano, M.F.; Costa, S.S.; Rossi-Bermann, B.; Buhl, R.; Stassen, M.; Taube, C. Kalanchoe pinnata inhibits mast cell activation and prevents allergic airway disease. Phytomedicine 2012, 19, 115–121. [CrossRef]

19. Baolin, L.; Inami, Y.; Tanaka, H.; Inagaki, N.; Iinuma, M.; Nagai, H. Resveratrol inhibits the release of mediators from bone marrow-derived mouse mast cells in vitro. Planta Med. 2004, 70, 305–309.

20. Yamashita, S.; Yokoyama, Y.; Hashimoto, T.; Mizuno, M. A novel in vitro co-culture model comprised of Coco-2/RBL-2H3 cells to evaluate anti-allergic effects of food factors through the intestine. J. Immunol. Methods 2016, 435, 1–6. [CrossRef]

21. Cao, J.; Li, C.; Ma, P.; Ding, Y.; Gao, J.; Jia, Q.; Zhu, J.; Zhang, T. Effect of kaempferol on IgE-mediated anaphylaxis in C57BL/6 mice and LAD2 cells. Phytomedicine 2020, 79, 153346. [CrossRef]

22. Pellow, J.; Nolte, A.; Temane, A.; Solomon, E.M. Health supplements for allergic rhinitis: A mixed-methods systematic review. Complement. Ther. Med. 2020, 51, 102425. [CrossRef] [PubMed]

23. Sakakibara, H.; Honda, Y.; Nakagawa, S.; Ashida, H.; Kanazawa, K. Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J. Agric. Food Chem. 2003, 51, 571–581. [CrossRef] [PubMed]

24. Murota, K.; Nakamura, Y.; Uehara, M. Flavonoid metabolism: The interaction of metabolites and gut microbiota. Biosci. Biotechnol. Biochem. 2018, 82, 600–610. [CrossRef] [PubMed]

25. Matsuyama, H.; Tanaka, W.; Miyoshi, N.; Miyazaki, T.; Michimoto, H.; Sakakibara, H. Beneficial effects of the consumption of sun-dried radishes (Paphanus sativus cv. YR-Hyuga-Risou) on dyslipidemia in apolipoprotein E-deficient mice. J. Food Biochem. 2021, 45, e13727. [CrossRef]

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る