リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「CRISPR/Cas9-mediated genome-edited mice reveal 10 testis-enriched genes are dispensable for male fecundity」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

CRISPR/Cas9-mediated genome-edited mice reveal 10 testis-enriched genes are dispensable for male fecundity

朴, 秀鎭 大阪大学

2021.03.24

概要

〔目的(Purpose)〕
As the world population continues to increase to unsustainable levels, the importance of birth control and the development of new contraceptives are emerging. To date, male contraceptive options have been lagging behind those available to women, and those few options available are not satisfactory to everyone. To solve this problem, we have been searching for new candidate target proteins for non-hormonal contraceptives. Testis-specific proteins are appealing targets for male contraceptives because they are more likely to be involved in male reproduction and their targeting by small molecules is predicted to have no on-target harmful effects on other organs.

〔方法ならびに成績(Methods/Results)〕
Using in silico analysis, we identified Erich2, Glt6d1, Prss58, Slfnl1, Sppl2c, Stpg3, Tex33, and Tex36 as testis-abundant genes in both mouse and human. The genes, 4930402F06Rik and 4930568D16Rik, are testis-abundant paralogs of Glt6d1 that we also discovered in mice but not in human, and were also included in our studies to eliminate the potential compensation. We generated knockout (KO) mouse lines of all listed genes using the CRISPR/Cas9 system. Analysis of all of the individual KO mouse lines as well as Glt6d1/4930402F06Rik/4930568D16Rik TKO mouse lines revealed that they are male fertile with no observable defects in reproductive organs,

〔総 括(Conclusion)〕
The results suggested that these 10 genes are not required for male fertility nor play redundant roles. Further studies are needed to uncover protein function(s), but in vivo functional screening using the CRISPR/Cas9 system is a fast and accurate way to find genes essential for male fertility, which may apply to studies of genes expressed elsewhere. In this study, although we could not find any potential protein targets for non-hormonal male contraceptives, our findings help to streamline efforts to find and focus on only the essential genes.

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る