リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Visual learning in tethered bees modifies flight orientation and is impaired by epinastine」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Visual learning in tethered bees modifies flight orientation and is impaired by epinastine

Kobayashi, Norihiro Hasegawa, Yuji Okada, Ryuichi Sakura, Midori 神戸大学

2023.07

概要

Visual-orientation learning of a tethered flying bee was investigated using a flight simulator and a novel protocol in which orientation preference toward trained visual targets was assessed in tests performed before and after appetitive conditioning. Either a blue or a green rectangle (conditioned stimulus, CS) was associated with 30% sucrose solution (unconditioned stimulus, US), whereas the other rectangle was not paired with US. Bees were tested in a closed-looped flight simulator 5 min after ten pairings of the US and CS. Conditioned bees were preferentially oriented to the CS after such training. This increase in preference for CS was maintained for 24 h, indicating the presence of long-term memory. Because the total orienting time was not altered by conditioning, conditioning did not enhance orientation activity itself but increased the relative time for orientation to CS. When 0.4 or 4 mM epinastine (an antagonist of octopamine receptors) was injected into the bee’s head 30 min prior to the experiment, both short- and long-term memory formation were significantly impaired, suggesting that octopamine, which is crucial for appetitive olfactory learning in insects, is also involved in visual orientation learning.

この論文で使われている画像

参考文献

Avarguès-Weber A, Giurfa M (2013) Conceptual learning by miniature

brains. Proc Biol Sci 280:20131907

Avarguès-Weber A, Mota T (2016) Advances and limitations of visual

conditioning protocols in harnessed bees. J Physiol 110:107–118

Balfanz S, Jordan N, Langenstück T, Breuer J, Bergmeier V, Baumann

A (2014) Molecular, pharmacological, and signaling properties

of octopamine receptors from honeybee (Apis mellifera) brain. J

Neurochem 129:284–296

Baracchi D, Cabirol A, Devaud J, Haase A, d’Ettorre GM (2020)

Pheromone components affect motivation and induce persistent

modulation of associative learning and memory in honey bees.

Commun Biol 3:447

Beggs KT, Tyndall JDA, Mercer AR (2011) Honey bee dopamine

and octopamine receptors linked to intracellular calcium signaling have a close phylogenetic and pharmacological relationship.

PLoS ONE 6:e26809

Blenau W, Wilms JA, Balfanz S, Baumann A (2020) Am Octα2R:

functional characterization of a honeybee octopamine receptor

inhibiting adenylyl cyclase activity. Int J Mol Sci 21:9334

Brembs B, Heisenberg M (2000) The operant and the classical in

conditioned orientation of Drosophila melanogaster at the flight

simulator. Learn Mem 7:104–115

Brembs B, Heisenberg M (2001) Conditioning with compound stimuli

in Drosophila melanogaster in the flight simulator. J Exp Biol

204:2849–2859

Brembs B, Christiansen F, Pflüger J, Duch C (2007) Flight initiation

and maintenance deficits in flies with genetically altered biogenic

amine levels. J Neurosci 27:11122–11131

537

Buatois A, Pichot C, Schultheiss P, Sandoz JC, Lazzari CR, Chittka

L, Avarguès-Weber A, Giurfa M (2017) Associative visual learning by tethered bees in a controlled visual environment. Sci Rep

7:12903

Buatois A, Flumian C, Schultheiss P, Avarguès-Weber A, Giurfa M

(2018) Transfer of visual learning between a virtual and a real

environment in honey bees: the role of active vision. Front Behav

Neurosci 12:139

Buehlmann C, Wozniak B, Goulard R, Webb B, Graham P, Niven

JE (2020) Mushroom bodies are required for learned visual

navigation, but not for innate visual behavior, in ants. Curr Biol

30:3438–3443

Cartwright BA, Collet TS (1982) How honey bees use landmarks to

guide their return to a food source. Nature 295:560–564

Cartwright BA, Collet TS (1983) Landmark learning in bees. J Comp

Physiol A 151:521–543

Collett TS (2008) Insect navigation: visual panoramas and the sky compass. Curr Biol 18:R1058–R1061

Collett M, Collett TS (2018) How does the insect central complex use

mushroom body output for steering? Curr Biol 28(13):R719–R736

Dickerson BH, de Souza AM, Huda A, Dickinson MH (2019) Flies

regulate wing motion via active control of a dual-function gyroscope. Curr Biol 29:3517–3524

Ehmer B, Gronenberg W (2002) Segregation of visual input to the

mushroom bodies in the honeybee (Apis mellifera). J Comp Neurol 451:362–373

Fry SN, Wehner R (2005) Look and turn: landmark-based goal navigation in honey bees. J Exp Biol 208:3945–3955

Geng H, Lafon G, Avarguès-Weber A, Buatois A, Masoou I, Giurfa M

(2022) Visual learning in a virtual reality environment upregulates

immediate early gene expression in the mushroom bodies of honey

bees. Commun Biol 5:130

Giurfa M (2012) Visual cognition in honey bees: from elemental visual

learning to non-elemental problem solving. In: Galizia CG, Eisenhardt D, Giurfa M (eds) Honeybee neurobiology and behavior.

Springer, Dordrecht Heidelberg London New York, pp 471–484

Giurfa M, Vorobyev M, Kevan P, Menzel R (1996) Detection of coloured stimuli by honeybees: minimum visual angles and receptor

specific contrasts. J Comp Physiol A 178:699–709

Grohmann L, Blenau W, Erber J, Ebert PR, Strünker T, Baumann A

(2003) Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain. J Neurochem

86:725–735

Gronenberg W (1986) Physiological and anatomical properties of optical input-fibres to the mushroom body in the bee brain. J Insect

Physiol 32:695–704

Guo P, Ritzmann RE (2013) Neural activity in the central complex

of the cockroach brain is linked to turning behaviors. J Exp Biol

216:992–1002

Hammer M, Menzel R (1998) Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in

honeybees. Learn Mem 5:146–156

Heinze S (2017) Unraveling the neural basis of insect navigation. Curr

Opin Insect Sci 24:58–67

Heisenberg M, Wolf R, Brembs B (2001) Flexibility in a single behavioral variable of Drosophila. Learn Mem 8:1–10

Hori S, Takeuchi H, Arikawa K, Kinoshita M, Ichikawa N, Sasaki M,

Kubo T (2006) Associative visual learning, color discrimination,

and chromatic adaptation in the harnessed honeybee Apis mellifera L. J Comp Physiol A 192:691–700

Hori S, Takeuchi H, Kubo T (2007) Associative learning and discrimination of motion cues in the harnessed honeybee Apis mellifera L.

J Comp Physiol A 193:825–833

Horridge A (2009) Generalization in visual recognition by the honeybee (Apis mellifera): a review and explanation. J Insect Physiol

55:499–511

13

538

Horridge A (2015) How bees distinguish colors. Eye. Brain 7:17–34

Hulse BK, Haberkern H, Franconville R, Turner-Evans D, Takemura

S, Wolff T, Noorman M, Dreher M, Dan C, Parekh R, Hermundstad AM, Rubin GM, Jayaraman V (2021a) A connectome of the

Drosophila central complex reveals network motifs suitable for

flexible navigation and context-dependent action selection. Elife

10:e66039

Kern R, Egelhaaf M (2000) Optomotor course control in flies with

largely asymmetric visual input. J Comp Physiol A 186:45–55

Kim YC, Lee HG, Lim J, Han KA (2013) Appetitive learning requires

the alpha1-like octopamine receptor OAMB in the Drosophila

mushroom body neurons. J Neurosci 33:1672–1677

Kobayashi N, Okada R, Sakura M (2020) Orientation to polarized light

in tethered flying honeybees. J Exp Biol 223:jeb228254

Kreissl S, Eichmüller S, Bicker G, Rapus J, Eckert M (1994) Octopamine-like immunoreactivity in the brain and subesophageal ganglion of the honeybee. J Comp Nerurol 348:583–595

Lafon G, Howard SR, Paffhausen BH, Avarguès-Weber A, Giurfa M

(2021) Motion cues from the background influence associative

color learning of honey bees in a virtual-reality scenario. Sci Rep

11:21127

Lafon G, Geng H, Avarguès-Weber A, Buatois A, Massou I, Giurfa

M (2022) The neural signature of visual leaning under restrictive

virtual-reality conditions. Front Behav Neurosci 16:846076

Li F, Lindsey JW, Marin EC, Otto N, Dreher M, Dempsey G, Stark I,

Bates AS, Pleijzier MW, Schlegel P, Nern A, Takemura S, Eckstein N, Yang T, Francis A, Braun A, Parekh R, Costa M, Scheffer

LK, Aso Y, Jefferis GSXE, Abbott LF, Litwin-Kumar A, Waddell

S, Rubin GM (2020) The connectome of the adult Drosophila

mushroom body provides insights into function. Elife 9:e62576

Lichtenstein L, Brockmann A, Spaethe J (2019) Learning of monochromatic stimuli in Apis cerana and Apis mellifera by means of PER

conditioning. J Insect Phyisol 114:30–34

Liu G, Seiler H, Wen A, Zars T, Ito K, Wolf R, Heisenberg M, Liu

L (2006) Distinct memory traces for two visual features in the

Drosophila brain. Nature 439:551–556

Luu T, Cheung A, Ball D, Srinivasan MV (2011) Honeybee flight: a

novel ‘streamlining’ response. J Exp Biol 214:2215–2225

Mancini N, Giurfa M, Sandoz JC, Avarguès-Weber A (2018) Aminergic neuromodulation of associative visual leaning in harnessed

honey bees. Neurobiol Learn Mem 155:556–567

Manjila SB, Kuruvilla M, Ferveur J, Sane SP, Hasan G (2019)

Extended flight bouts require disinhibition from GABAergic

mushroom body neurons. Curr Biol 29:283–293

Mappes M, Homberg U (2004) Behavioral analysis of polarization

vision in tethered flying locusts. J Comp Physiol A 190:61–68

Menzel R (2012) The honeybee as a model for understanding the basis

of cognition. Nat Rev Neurosci 13:758–768

Menzel R, Greggers U, Smith A, Berger S, Brandt R, Brunke S,

Bundrock G, Hülse S, Plümpe T, Schaupp F, Schüttler E, Stach

S, Stindt J, Stollhoff N, Watzl S (2005) Honey bees navigate

according to a map-like spatial memory. Proc Nat Acad Sci USA

102:3040–3045

Menzel R, Kirbach A, Haass W, Fischer B, Fuchs J, Koblofsky M,

Lehmann K, Reiter L, Meyer H, Nguyen H, Jones S, Norton P,

Greggers U (2011) A common frame of reference for learned

and communicated vectors in honeybee navigation. Curr Biol

21:645–650

Menzel R, Tison L, Fischer-Nakai J, Cheeseman J, Balbuena MS, Chen

X, Landgraf T, Petrasch J, Polster J, Greggers U (2018) Guidance

of navigating honeybees by learned elongated ground structures.

Front Behav Neurosci 12:322

Minnich DE (1932) The contact chemoreceptors of the honey bee, Apis

mellifera Linn. J Exp Zool 61:375–393

13

Journal of Comparative Physiology A (2023) 209:529–539

Mizunami M, Matsumoto Y (2017) Roles of octopamine and dopamine

neurons for mediating appetitive and aversive signals in Pavlovian

conditioning in crickets. Front Physiol 8:1027

Mizunami M, Weibrecht JM, Strausfeld NJ (1998) Mushroom bodies

of the cockroach: their participation in place memory. J Comp

Neurol 402:520–537

Mobbs PG (1984) Neural networks in the mushroom bodies of the

honeybee. J Insect Physiol 30:43–58

Niggebrügge C, Leboulle G, Menzel R, Komischke B, Hemple de

Ibarra H (2009) Fast learning but coarse discrimination of colours

in restrained honeybees. J Exp Biol 212:1344–1350

Ofstad TA, Zuker CS, Reiser MB (2011) Visual place learning in Drosophila melanogaster. Nature 474:204–207

Okada R, Rybak J, Manz G, Menzel R (2007) Learning-related plasticity in PE1 and other mushroom body-extrinsic neurons in the

honeybee brain. J Neurosci 27:11736–11747

Paffhausen BH, Fuchs I, Duer A, Hillmer I, Dimitriou IM, Menzel R

(2020) Neural correlates of social behavior in mushroom body

extrinsic neurons of the honeybee Apis mellifera. Front Behav

Neurosci 14:62

Plath JA, Entler BV, Kirkerud NH, Schlegel U, Galizia CG, Barron

AB (2017) Different roles for honey bee mushroom bodies and

central complex in visual learning of colored lights in an aversive

conditioning assay. Front Behav Nerusci 11:98

Reim T, Balfanz S, Baumann A, Blenau W, Thamm M, Scheiner R

(2017) AmTAR2: functional characterization of a honeybee

tyramine receptor stimulating adenylyl cyclase activity. Insect

Biochem Mol Biol 80:91–100

Reppert SM, Zhu H, White RH (2004) Polarized light helps monarch

butterflies navigate. Curr Biol 14:155–158

Rusch C, Alonso D, Alberto S, Riffell JA (2021) Visuo-motor feedback

modulates neural activity in the medulla of the honeybee, Apis

mellifera. J Neurosci 41:3192–3203

Sakura M, Okada R, Aonuma H (2012) Evidence for instantaneous

e-vector detection in the honeybee using an associative learning

paradigm. Roc R Soc B 279:535–542

Schröter U, Malun D, Menzel R (2007) Innervation pattern of suboesophageal ventral unpaired median neurons in the honeybee brain.

Cell Tiss Res 327:647–667

Schultheiss P, Buatois A, Avarguès-Weber A, Giurfa M (2017) Using

virtual reality to study visual performances of honeybees. Curr

Opin Insect Sci 24:43–50

Schwaerzel M, Monastirioti M, Scholz H, Friggi-Grelin F, Birman

S, Heisenberg M (2003) Dopamine and octopamine differentiate

between aversive and appetitive olfactory memories in Drosophila. J Neurosci 23:10495–10502

Sinakevitch I, Mustard JA, Smith BH (2011) Distribution of the octopamine receptor AmOA1 in the honey bee brain. PLoS ONE

6:e14536

Srinivasan MV (1994) Pattern recognition in the honeybee: recent progress. J Insect Physiol 40:183–194

Stone T, Webb B, Adden A, Weddig NB, Honkanen A, Tempkin R,

Wcislo W, Scimeca L, Warrant E, Heinze S (2017) An anatomically constrained model for path integration in the bee brain. Curr

Biol 27:3069–3085

Taylor GJ, Luu T, Ball D, Srinivasan MV (2013) Vision and air flow

combine to streamline flying honeybees. Sci Rep 3:2614

Tedjakumala SR, Aimable M, Giurfa M (2013) Pharmacological modulation of aversive responsiveness in honey bees. Front Behav

Neurosci 7:221

Towne WF, Moscrip H (2008) The connection between landscapes

and the solar ephemeris in honey bees. J Exp Biol 211:3729–3736

Towne WF, Ritrovato AE, Esposto A, Brown DF (2017) Honeybees use

the skyline in orientation. J Exp Biol 220:2476–2485

Unoki S, Matsumoto Y, Mizunami M (2005) Participation of octopaminergic reward system and dopaminergic punishment system in

Journal of Comparative Physiology A (2023) 209:529–539 insect olfactory learning revealed by pharmacological study. Eur

J Neurosci 22:1409–1416

Unoki S, Matsumoto Y, Mizunami M (2006) Roles of octopaminergic

and dopaminergic neurons in mediating reward and punishment

signals in insect visual learning. Eur J Neurosci 24:2031–2038

Varga AG, Kathman ND, Martin JP, Guo P, Ritzmann RE (2017) Spatial navigation and the central complex: sensory acquisition, orientation, and motor control. Front Behav Neurosci 11:4

Vergoz V, Roussel E, Sandoz JC, Giurfa M (2007) Aversive learning

in honeybees revealed by the olfactory conditioning of the sting

extension reflex. PLoS ONE 2:e288

Vieira AR, Salles N, Borges M, Mota T (2018) Visual discrimination

transfer and modulation by biogenic amines in honeybees. J Exp

Biol 221:jeb178830

Visscher KP, Seeley TD (1982) Foraging strategy of honeybee colonies

in a temperate deciduous forest. Ecology 63:1790–1801

Vogt K, Schnaitmann C, Dylla KV, Knapek S, Aso Y, Rubin GM, Tanimoto H (2014) Shared mushroom body circuits underlie visual

and olfactory memories in Drosophila. Elife 3:e02395

Warren TL, Weir PT, Dickinson MH (2018) Flying Drosophila melanogaster maintain arbitrary but stable headings relative to the

angle of polarized light. J Exp Biol 221:jeb177550

539

Wissink M, Nehring V (2021b) Appetitive olfactory learning suffers in

ants when octopamine or dopamine receptors are blocked. J Exp

Biol 224:jeb242732

Wolf R, Heisenberg M (1991) Basic organization of operant behavior

as revealed in Drosophila flight orientation. J Comp Physiol A

169:699–705

Wu W, Moreno AM, Tangen JM, Reinhard J (2013) Honeybees can discriminate between Monet and Picasso paintings. J Comp Physiol

A 199:45–55

Yamagata N, Ichinose T, Aso Y, Plaçais P, Friedrich AB, Sima RJ,

Preat T, Rubin GM, Tanimoto H (2015) Distinct dopamine neurons mediate reward signals for short- and long-term memories.

Proc NatAcad Sci USA 112:578–583

Publisher's Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

13

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る