リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Accurate integration of single cell transcriptome replicates」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Accurate integration of single cell transcriptome replicates

Loza Lopez, Martin De Jesus 大阪大学 DOI:10.18910/88181

2022.03.24

概要

Single-cell RNA-sequencing (scRNA-seq) technologies have revolutionized the study of biological systems by capturing gene expression profiles from thousands of cells in the same experiment. One important application of scRNA-seq data is the comparison of two or more samples to describe genetic changes between conditions, e.g. disease or stimulation conditions. In this kind of analysis, replicated samples allow investigating subtle changes in cells composition, improving the understanding and treatment of conditions. However, these analyses are hindered by technical differences of samples known as batch effects. Batch effects must be addressed in every joint analysis due to their possible correlation with the main biological components. But this task is not trivial, as non-linearities in technical differences of samples might appear in distinct ways on every experiment. In the last three years, different methods have been developed for the integration of scRNA-seq data, allowing to create cell atlases and to perform joint analyses of datasets. However, these methods could over-correct, merging cells from different types. This issue is particularly problematic in the analysis of replicated experiments with small batch effects, where cells with subtle changes in gene expression could be masked, affecting the conclusion of the experiment. To address this problem, I designed Canek, a bioinformatics tool to integrate scRNA-seq data replicates sequenced with the same technology. Assuming a linear batch effect within a group of similar cells, Canek uses linear estimation and fuzzy logic to obtain cell-specific correction vectors to integrate datasets. Using tests specifically designed to assess over-correction, I show that Canek integrates datasets with the smallest amount of over-correction as compared with state-of-the-art methods. To show how to implement Canek within a workflow, I performed a complete analysis using Canek for the characterization of mouse cells from the spleen. In the same analysis, I show the parameter dependence for commonly used tools in the study of scRNA-seq data, which will serve as a comprehensive guide for other researchers. Canek is computationally efficient and can integrate thousands of cells without over-correction, a special characteristic that could lead future experiments to the improvement and/or the design of gene-specific treatments.

この論文で使われている画像

参考文献

[1] T. S. Adams, J. C. Schupp, S. Poli, E. A. Ayaub, N. Neumark, F. Ahangari, S. G. Chu,B. A. Raby, G. DeIuliis, M. Januszyk, Q. Duan, H. A. Arnett, A. Siddiqui, G. R. Washko,R. Homer, X. Yan, I. O. Rosas, and N. Kaminski. Single-cell rna-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci Adv, 6(28):eaba1983, 2020.

[2] Robert A Amezquita, Aaron TL Lun, Etienne Becht, Vince J Carey, Lindsay N Carpp, Ludwig Geistlinger, Federico Marini, Kevin Rue-Albrecht, Davide Risso, and Char- lotte Soneson. Orchestrating single-cell analysis with bioconductor. Nature methods, 17(2):137–145, 2020.

[3] S. Anders and W. Huber. Differential expression analysis for sequence count data. Genome Biol, 11(10):R106, 2010. Anders, Simon Huber, Wolfgang eng Research Sup- port, Non-U.S. Gov’t England Genome Biol. 2010;11(10):R106. doi: 10.1186/gb-2010- 11-10-r106. Epub 2010 Oct 27.

[4] R. Argelaguet, A. S. E. Cuomo, O. Stegle, and J. C. Marioni. Computational principles and challenges in single-cell data integration. Nat Biotechnol, 2021.

[5] M. Baron, A. Veres, S. L. Wolock, A. L. Faust, R. Gaujoux, A. Vetere, J. H. Ryu, B. K. Wagner, S. S. Shen-Orr, A. M. Klein, D. A. Melton, and I. Yanai. A single-cell transcrip- tomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst, 3(4):346–360.e4, 2016.

[6] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008(10):P10008, 2008.

[7] P. Brennecke, S. Anders, J. K. Kim, A. A. Kolodziejczyk, X. Zhang, V. Proserpio, B. Bay- ing, V. Benes, S. A. Teichmann, J. C. Marioni, and M. G. Heisler. Accounting for techni- cal noise in single-cell rna-seq experiments. Nat Methods, 10(11):1093–5, 2013. Bren- necke, Philip Anders, Simon Kim, Jong Kyoung Kolodziejczyk, Aleksandra A Zhang, Xiuwei Proserpio, Valentina Baying, Bianka Benes, Vladimir Teichmann, Sarah A Mar- ioni, John C Heisler, Marcus G eng Research Support, Non-U.S. Gov’t Nat Methods. 2013 Nov;10(11):1093-5. doi: 10.1038/nmeth.2645. Epub 2013 Sep 22.

[8] A. Butler, P. Hoffman, P. Smibert, E. Papalexi, and R. Satija. Integrating single-cell tran- scriptomic data across different conditions, technologies, and species. Nat Biotechnol, 36(5):411–420, 2018.

[9] M. Büttner, Z. Miao, F. A. Wolf, S. A. Teichmann, and F. J. Theis. A test metric for assessing single-cell rna-seq batch correction. Nat Methods, 16(1):43–49, 2019.

[10] M. B. Cole, D. Risso, A. Wagner, D. DeTomaso, J. Ngai, E. Purdom, S. Dudoit, andN. Yosef. Performance assessment and selection of normalization procedures for single-cell rna-seq. Cell Syst, 8(4):315–328 e8, 2019. Cole, Michael B Risso, Da- vide Wagner, Allon DeTomaso, David Ngai, John Purdom, Elizabeth Dudoit, Sandrine Yosef, Nir eng F31 DE025176/DE/NIDCR NIH HHS/ U01 MH105979/MH/NIMH NIHHHS/ U19 MH114830/MH/NIMH NIH HHS/ Evaluation Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Cell Syst. 2019 Apr 24;8(4):315-328.e8. doi: 10.1016/j.cels.2019.03.010.

[11] Gabor Csardi and Tamas Nepusz. The igraph software package for complex network research. InterJournal, complex systems, 1695(5):1–9, 2006.

[12] Vladimir Estivill-Castro. Why so many clustering algorithms: a position paper. ACM SIGKDD explorations newsletter, 4(1):65–75, 2002.

[13] Joseph L. Fix, Evelyn; Hodge. Discriminatory analysis. nonparametric discrimination: Consistency properties. Report, USAF School of Aviation Medicine, Randolph Field, Texas., 1951 1951.

[14] R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. El- lis, L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R. Irizarry,F. Leisch, C. Li, M. Maechler, A. J. Rossini, G. Sawitzki, C. Smith, G. Smyth, L. Tierney,J. Y. Yang, and J. Zhang. Bioconductor: open software development for computa- tional biology and bioinformatics. Genome Biol, 5(10):R80, 2004. Gentleman, Robert C Carey, Vincent J Bates, Douglas M Bolstad, Ben Dettling, Marcel Dudoit, Sandrine Ellis, Byron Gautier, Laurent Ge, Yongchao Gentry, Jeff Hornik, Kurt Hothorn, Torsten Huber, Wolfgang Iacus, Stefano Irizarry, Rafael Leisch, Friedrich Li, Cheng Maech- ler, Martin Rossini, Anthony J Sawitzki, Gunther Smith, Colin Smyth, Gordon Tierney, Luke Yang, Jean Y H Zhang, Jianhua eng England Genome Biol. 2004;5(10):R80. doi: 10.1186/gb-2004-5-10-r80. Epub 2004 Sep 15.

[15] Inc GitHub. Github. URl: https://github. com/(visited on 04/23/2014), 2016.

[16] W. W. B. Goh, W. Wang, and L. Wong. Why batch effects matter in omics data, and how to avoid them. Trends Biotechnol, 35(6):498–507, 2017.

[17] D. Grün, M. J. Muraro, J. C. Boisset, K. Wiebrands, A. Lyubimova, G. Dharmadhikari,M. van den Born, J. van Es, E. Jansen, H. Clevers, E. J. P. de Koning, and A. van Oudenaarden. De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell, 19(2):266–277, 2016.

[18] L. Haghverdi, A. T. L. Lun, M. D. Morgan, and J. C. Marioni. Batch effects in single- cell rna-sequencing data are corrected by matching mutual nearest neighbors. Nat Biotechnol, 36(5):421–427, 2018.

[19] Y. Hao, S. Hao, E. Andersen-Nissen, 3rd Mauck, W. M., S. Zheng, A. Butler, M. J. Lee, A. J. Wilk, C. Darby, M. Zager, P. Hoffman, M. Stoeckius, E. Papalexi, E. P. Mim- itou, J. Jain, A. Srivastava, T. Stuart, L. M. Fleming, B. Yeung, A. J. Rogers, J. M. McElrath, C. A. Blish, R. Gottardo, P. Smibert, and R. Satija. Integrated analysis of multimodal single-cell data. Cell, 2021. Hao, Yuhan Hao, Stephanie Andersen-Nissen, Erica Mauck, William M 3rd Zheng, Shiwei Butler, Andrew Lee, Maddie J Wilk, Aaron J Darby, Charlotte Zager, Michael Hoffman, Paul Stoeckius, Marlon Papalexi, Efthymia Mimitou, Eleni P Jain, Jaison Srivastava, Avi Stuart, Tim Fleming, Lamar M Yeung, Bertrand Rogers, Angela J McElrath, Juliana M Blish, Catherine A Gottardo, Raphael Smibert, Peter Satija, Rahul eng Cell. 2021 May 27. pii: S0092-8674(21)00583-3. doi: 10.1016/j.cell.2021.04.048.

[20] G. Heimberg, R. Bhatnagar, H. El-Samad, and M. Thomson. Low dimensional- ity in gene expression data enables the accurate extraction of transcriptional pro- grams from shallow sequencing. Cell Syst, 2(4):239–250, 2016. Heimberg, Gra- ham Bhatnagar, Rajat El-Samad, Hana Thomson, Matt eng DP5 OD012194/OD/NIH HHS/ P50 GM081879/GM/NIGMS NIH HHS/ T32 EB009383/EB/NIBIB NIH HHS/ T32GM067547/GM/NIGMS NIH HHS/ Research Support, N.I.H., Extramural Cell Syst. 2016 Apr 27;2(4):239-250. doi: 10.1016/j.cels.2016.04.001. Epub 2016 Apr 27.

[21] N. Henig, N. Avidan, I. Mandel, E. Staun-Ram, E. Ginzburg, T. Paperna, R. Y. Pinter, and A. Miller. Interferon-beta induces distinct gene expression response patterns in human monocytes versus t cells. PLoS One, 8(4):e62366, 2013.

[22] B. Hie, B. Bryson, and B. Berger. Efficient integration of heterogeneous single-cell transcriptomes using scanorama. Nat Biotechnol, 37(6):685–691, 2019.

[23] T. Ilicic, J. K. Kim, A. A. Kolodziejczyk, F. O. Bagger, D. J. McCarthy, J. C. Marioni, and S. A. Teichmann. Classification of low quality cells from single-cell rna-seq data. Genome Biol, 17:29, 2016. Ilicic, Tomislav Kim, Jong Kyoung Kolodziejczyk, Aleksan- dra A Bagger, Frederik Otzen McCarthy, Davis James Marioni, John C Teichmann, Sarah A eng Biotechnology and Biological Sciences Research Council/United King- dom Research Support, Non-U.S. Gov’t England Genome Biol. 2016 Feb 17;17:29. doi: 10.1186/s13059-016-0888-1.

[24] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to statistical learning, volume 112. Springer, 2013.

[25] W. E. Johnson, C. Li, and A. Rabinovic. Adjusting batch effects in microarray expression data using empirical bayes methods. Biostatistics, 8(1):118–27, 2007.

[26] Hyun Min Kang, Meena Subramaniam, Sasha Targ, Michelle Nguyen, Lenka Maliskova, Elizabeth McCarthy, Eunice Wan, Simon Wong, Lauren Byrnes, and Cristina M Lanata. Multiplexed droplet single-cell rna-sequencing using natural genetic variation. Nature biotechnology, 36(1):89, 2018.

[27] Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an introduction to cluster analysis, volume 344. John Wiley and Sons, 2009.

[28] E. Kleiman, D. Salyakina, M. De Heusch, K. L. Hoek, J. M. Llanes, I. Castro, J. A. Wright,E. S. Clark, D. M. Dykxhoorn, E. Capobianco, A. Takeda, R. M. McCormack, E. R. Po- dack, J. C. Renauld, and W. N. Khan. Corrigendum: Distinct transcriptomic features are associated with transitional and mature b-cell populations in the mouse spleen. Front Im- munol, 7:267, 2016. Kleiman, Eden Salyakina, Daria De Heusch, Magali Hoek, Kristen L Llanes, Joan M Castro, Iris Wright, Jacqueline A Clark, Emily S Dykxhoorn, Derek M Capobianco, Enrico Takeda, Akiko McCormack, Ryan M Podack, Eckhard R Renauld, Jean-Christophe Khan, Wasif N eng F31 AI106290/AI/NIAID NIH HHS/ Published Er- ratum Switzerland Front Immunol. 2016 Jul 4;7:267. doi: 10.3389/fimmu.2016.00267. eCollection 2016.

[29] I. Korsunsky, N. Millard, J. Fan, K. Slowikowski, F. Zhang, K. Wei, Y. Baglaenko,M. Brenner, P. R. Loh, and S. Raychaudhuri. Fast, sensitive and accurate integration of single-cell data with harmony. Nat Methods, 16(12):1289–1296, 2019.

[30] N. Lawlor, J. George, M. Bolisetty, R. Kursawe, L. Sun, V. Sivakamasundari, I. Kycia,P. Robson, and M. L. Stitzel. Single-cell transcriptomes identify human islet cell sig- natures and reveal cell-type-specific expression changes in type 2 diabetes. Genome Res, 27(2):208–222, 2017.

[31] J. T. Leek, R. B. Scharpf, H. C. Bravo, D. Simcha, B. Langmead, W. E. Johnson, D. Ge- man, K. Baggerly, and R. A. Irizarry. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet, 11(10):733–9, 2010.

[32] Bryan W Lewis, Jim Baglama, and Lothar Reichel. The irlba package, 2019.

[33] Y. Lin, S. Ghazanfar, K. Y. X. Wang, J. A. Gagnon-Bartsch, K. K. Lo, X. Su, Z. G. Han, J. T. Ormerod, T. P. Speed, P. Yang, and J. Y. H. Yang. scmerge leverages factor analysis, stable expression, and pseudoreplication to merge multiple single-cell rna-seq datasets. Proc Natl Acad Sci U S A, 116(20):9775–9784, 2019.

[34] Yang Liu, Tao Wang, Bin Zhou, and Deyou Zheng. Robust integration of multiple single- cell rna sequencing datasets using a single reference space. Nature biotechnology, pages 1–8, 2021.

[35] M. D. Luecken, M. Büttner, K. Chaichoompu, A. Danese, M. Interlandi, M. F. Mueller,D. C. Strobl, L. Zappia, M. Dugas, M. Colomé-Tatché, and F. J. Theis. Benchmarking atlas-level data integration in single-cell genomics. bioRxiv, page 2020.05.22.111161, 2020.

[36] M. D. Luecken and F. J. Theis. Current best practices in single-cell rna-seq analy- sis: a tutorial. Mol Syst Biol, 15(6):e8746, 2019. Luecken, Malte D Theis, Fabian J eng Research Support, Non-U.S. Gov’t Review England Mol Syst Biol. 2019 Jun 19;15(6):e8746. doi: 10.15252/msb.20188746.

[37] A. T. Lun, K. Bach, and J. C. Marioni. Pooling across cells to normalize single-cell rna sequencing data with many zero counts. Genome Biol, 17:75, 2016. Lun, Aaron T L Bach, Karsten Marioni, John C eng A17197/Cancer Research UK/United King- dom Research Support, Non-U.S. Gov’t England Genome Biol. 2016 Apr 27;17:75. doi: 10.1186/s13059-016-0947-7.

[38] James MacQueen. Some methods for classification and analysis of multivariate obser- vations, 1967.

[39] C. Mayer, C. Hafemeister, R. C. Bandler, R. Machold, R. Batista Brito, X. Jaglin,K. Allaway, A. Butler, G. Fishell, and R. Satija. Developmental diversification of cortical inhibitory interneurons. Nature, 555(7697):457–462, 2018. Mayer, Christian Hafemeister, Christoph Bandler, Rachel C Machold, Robert Batista Brito, Renata Jaglin, Xavier Allaway, Kathryn Butler, Andrew Fishell, Gord Satija, Rahul eng R01 NS039007/NS/NINDS NIH HHS/ P01 NS074972/NS/NINDS NIH HHS/ R01 MH071679/MH/NIMH NIH HHS/ T32 GM007308/GM/NIGMS NIH HHS/ DP2 HG009623/HG/NHGRI NIH HHS/ F30 MH114462/MH/NIMH NIH HHS/ R01 NS081297/NS/NINDS NIH HHS/ R01 MH111529/MH/NIMH NIH HHS/ Research Sup-port, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t,Non-P.H.S. England Nature. 2018 Mar 22;555(7697):457-462. doi: 10.1038/na- ture25999. Epub 2018 Mar 5.

[40] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approxima- tion and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

[41] M. J. Muraro, G. Dharmadhikari, D. Grün, N. Groen, T. Dielen, E. Jansen, L. van Gurp,M. A. Engelse, F. Carlotti, E. J. de Koning, and A. van Oudenaarden. A single-cell transcriptome atlas of the human pancreas. Cell Syst, 3(4):385–394.e3, 2016.

[42] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, 1901.

[43] K. Polański, M. D. Young, Z. Miao, K. B. Meyer, S. A. Teichmann, and J. E. Park. Bbknn: fast batch alignment of single cell transcriptomes. Bioinformatics, 36(3):964–965, 2020.

[44] R Satija, P Hoffman, and A Butler. Seuratdata: Install and manage seurat datasets, 2019.

[45] L. Scrucca, M. Fop, T. B. Murphy, and A. E. Raftery. mclust 5: Clustering, classifica- tion and density estimation using gaussian finite mixture models. R J, 8(1):289–317, 2016. Scrucca, Luca Fop, Michael Murphy, T Brendan Raftery, Adrian E eng R01 HD054511/HD/NICHD NIH HHS/ R01 HD070936/HD/NICHD NIH HHS/ U54 HL127624/HL/NHLBI NIH HHS/ R J. 2016 Aug;8(1):289-317.

[46] Å Segerstolpe, A. Palasantza, P. Eliasson, E. M. Andersson, A. C. Andréasson, X. Sun,S. Picelli, A. Sabirsh, M. Clausen, M. K. Bjursell, D. M. Smith, M. Kasper, C. Ämmälä, and R. Sandberg. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab, 24(4):593–607, 2016.

[47] C. Soneson and M. D. Robinson. Bias, robustness and scalability in single-cell differen- tial expression analysis. Nat Methods, 15(4):255–261, 2018. Soneson, Charlotte Robin- son, Mark D eng Research Support, Non-U.S. Gov’t Nat Methods. 2018 Apr;15(4):255-261. doi: 10.1038/nmeth.4612. Epub 2018 Feb 26.

[48] O. Stegle, S. A. Teichmann, and J. C. Marioni. Computational and analytical chal- lenges in single-cell transcriptomics. Nat Rev Genet, 16(3):133–45, 2015. Stegle, Oliver Teichmann, Sarah A Marioni, John C eng Review England Nat Rev Genet. 2015 Mar;16(3):133-45. doi: 10.1038/nrg3833. Epub 2015 Jan 28.

[49] Alexander Strehl. Relationship-based clustering and cluster ensembles for high- dimensional data mining. The University of Texas at Austin, 2002.

[50] Stephen Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering (studies in nonlinearity). CRC Press, 2001.

[51] T. Stuart, A. Butler, P. Hoffman, C. Hafemeister, E. Papalexi, W. M. Mauck, Y. Hao,M. Stoeckius, P. Smibert, and R. Satija. Comprehensive integration of single-cell data.Cell, 177(7):1888–1902.e21, 2019.

[52] V. Svensson, R. Vento-Tormo, and S. A. Teichmann. Exponential scaling of single-cell rna-seq in the past decade. Nat Protoc, 13(4):599–604, 2018.

[53] Consortium Tabula Muris, coordination Overall, coordination Logistical, collection Organ, processing, preparation Library, sequencing, analysis Computational data, annotation Cell type, group Writing, group Supplemental text writing, and investi- gators Principal. Single-cell transcriptomics of 20 mouse organs creates a tab- ula muris. Nature, 562(7727):367–372, 2018. eng DP1 LM012179/LM/NLM NIH HHS/ DP1 AG053015/AG/NIA NIH HHS/ K08 DK101603/DK/NIDDK NIH HHS/ I01 RX001222/RX/RRD VA/ P30 DK116074/DK/NIDDK NIH HHS/ I01 BX002324/BX/BLRD VA/ P30 DK026743/DK/NIDDK NIH HHS/ R01 CA157877/CA/NCI NIH HHS/ Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. England Nature. 2018 Oct;562(7727):367-372. doi: 10.1038/s41586- 018-0590-4. Epub 2018 Oct 3.

[54] Tomohiro Takagi and Michio Sugeno. Fuzzy identification of systems and its applica- tions to modeling and control, 1985.

[55] R Core Team. Vienna: R foundation for statistical computing, 2020, 2020.

[56] H. T. N. Tran, K. S. Ang, M. Chevrier, X. Zhang, N. Y. S. Lee, M. Goh, and J. Chen. A benchmark of batch-effect correction methods for single-cell rna sequencing data. Genome Biol, 21(1):12, 2020.

[57] C. Trapnell. Defining cell types and states with single-cell genomics. Genome Res, 25(10):1491–8, 2015. Trapnell, Cole eng DP2 HD088158/HD/NICHD NIH HHS/ Re-search Support, Non-U.S. Gov’t Review Genome Res. 2015 Oct;25(10):1491-8. doi: 10.1101/gr.190595.115.

[58] K. Van den Berge, F. Perraudeau, C. Soneson, M. I. Love, D. Risso, J. P. Vert,M. D. Robinson, S. Dudoit, and L. Clement. Observation weights unlock bulk rna- seq tools for zero inflation and single-cell applications. Genome Biol, 19(1):24, 2018. Van den Berge, Koen Perraudeau, Fanny Soneson, Charlotte Love, Michael I Risso, Davide Vert, Jean-Philippe Robinson, Mark D Dudoit, Sandrine Clement, Lieven eng ABS4NGS ANR-11-BINF-0001/Agence Nationale de la Recherche/International 1S 418 16N/Fonds Wetenschappelijk Onderzoek/International U01 MH105979/MH/NIMH NIH HHS/ 280032/European Research Council/International P7/06/IAP StUDyS grant/In- ternational U01 MH105979/NH/NIH HHS/ P01 CA142538/CA/NCI NIH HHS/ FK-16-107/Forschungskredit/International ERC-SMAC-290032/European Research Coun- cil/International CA142538-08/NH/NIH HHS/ Research Support, Non-U.S. Gov’t Eng- land Genome Biol. 2018 Feb 26;19(1):24. doi: 10.1186/s13059-018-1406-4.

[59] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning research, 9(11), 2008.

[60] Guido Van Rossum. Python programming language, 2007.

[61] A. Vandenbon, V. H. Dinh, N. Mikami, Y. Kitagawa, S. Teraguchi, N. Ohkura, and.Sakaguchi. Immuno-navigator, a batch-corrected coexpression database, reveals cell type-specific gene networks in the immune system. Proc Natl Acad Sci U S A, 113(17):E2393–402, 2016. Vandenbon, Alexis Dinh, Viet H Mikami, Norihisa Kitagawa, Yohko Teraguchi, Shunsuke Ohkura, Naganari Sakaguchi, Shimon eng Research Sup- port, Non-U.S. Gov’t Proc Natl Acad Sci U S A. 2016 Apr 26;113(17):E2393-402. doi: 10.1073/pnas.1604351113. Epub 2016 Apr 13.

[62] Kaijun Wang, Jie Zheng, Junying Zhang, and Jiyang Dong. Estimating the number of clusters via system evolution for cluster analysis of gene expression data. IEEE Transactions on information technology in biomedicine, 13(5):848–853, 2009.

[63] J. D. Welch, V. Kozareva, A. Ferreira, C. Vanderburg, C. Martin, and E. Z. Macosko. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell, 177(7):1873–1887.e17, 2019.

[64] L. Zappia, B. Phipson, and A. Oshlack. Splatter: simulation of single-cell rna sequencing data. Genome Biol, 18(1):174, 2017.

[65] L. Zappia, B. Phipson, and A. Oshlack. Exploring the single-cell rna-seq analysis land- scape with the scrna-tools database. PLoS Comput Biol, 14(6):e1006245, 2018. Zap- pia, Luke Phipson, Belinda Oshlack, Alicia eng Research Support, Non-U.S. Gov’t PLoS Comput Biol. 2018 Jun 25;14(6):e1006245. doi: 10.1371/journal.pcbi.1006245. eCol- lection 2018 Jun.

[66] Y. Zhang, G. Parmigiani, and W. E. Johnson. : batch effect adjustment for rna-seq count data. NAR Genom Bioinform, 2(3):lqaa078, 2020.

[67] Y. Zhang and F. Wang. Ssber: removing batch effect for single-cell rna sequencing data. BMC Bioinformatics, 22(1):249, 2021. Zhang, Yin Wang, Fei eng 61472086/Na- tional Natural Science Foundation of China England BMC Bioinformatics. 2021 May 14;22(1):249. doi: 10.1186/s12859-021-04165-w.

[68] G. X. Zheng, J. M. Terry, P. Belgrader, P. Ryvkin, Z. W. Bent, R. Wilson, S. B. Ziraldo,T. D. Wheeler, G. P. McDermott, J. Zhu, M. T. Gregory, J. Shuga, L. Montesclaros, J. G. Underwood, D. A. Masquelier, S. Y. Nishimura, M. Schnall-Levin, P. W. Wyatt, C. M. Hindson, R. Bharadwaj, A. Wong, K. D. Ness, L. W. Beppu, H. J. Deeg, C. McFarland,K. R. Loeb, W. J. Valente, N. G. Ericson, E. A. Stevens, J. P. Radich, T. S. Mikkelsen,B. J. Hindson, and J. H. Bielas. Massively parallel digital transcriptional profiling of single cells. Nat Commun, 8:14049, 2017.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る