リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Disruption of Osteoprotegerin has complex effects on medial destruction and adventitial fibrosis during mouse abdominal aortic aneurysm formation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Disruption of Osteoprotegerin has complex effects on medial destruction and adventitial fibrosis during mouse abdominal aortic aneurysm formation

大谷 水景 広島大学

2020.08.27

概要

Aortic aneurysm (AA) refers to a dilatation of the aorta due to loss of elasticity and
degenerative weakening of its wall. Continuous expansion of the aorta results in rupture
and is associated with a high mortality rate [1]. Analyses of AA in experimental animal
models, including the CaCl2-induced mouse model and the AngII-induced ApoE
knockout (KO) mouse model [2, 3], are important for understanding the pathogenesis of
this disease and for developing effective drug treatments aimed at arresting aortic
expansion [4-6] [7].
Osteoprotegerin (Opg, also referred to as TNFRSF11B), a member of the tumor
necrosis factor (TNF) receptor superfamily, functions as a decoy receptor to regulate
various factors across many biological processes [8]. For example, Opg has been shown
to regulate bone metabolism through the Receptor activator of nuclear factor kappa-B
ligand (Rankl) [9, 10] and apoptosis of cancer cells through TNF-related apoptosisinducing ligand (Trail). Given that vascular diseases are often involved in bone
pathologies [11, 12], and because Opg is expressed in vascular smooth muscle cells
(VSMCs) [13] and serum levels of OPG are elevated in cardiovascular disease [14] [15]
[16] [17], there is great interest in the roles Opg may play in the vascular system.
We recently reported that Opg plays a preventive role in the development of
abdominal AA (AAA) in the CaCl2-induced aneurysm model [18]. In Opg KO mice, we
found larger aneurysms with destruction of the aortic medial layer, which had increased
expression of matrix metalloproteinase (Mmp)-9 and Trail. The expression of Opg in
aortic tissue was also increased in response to aneurysm induction in wild-type mice. ...

この論文で使われている画像

参考文献

1.

Golledge J, Norman PE. Atherosclerosis and abdominal aortic aneurysm:

cause, response, or common risk factors? Arterioscler Thromb Vasc Biol.

2010;30(6):1075-7. doi: 10.1161/ATVBAHA.110.206573. PubMed PMID: 20484703;

PubMed Central PMCID: PMC2874982.

2.

Daugherty A, Cassis LA. Mouse models of abdominal aortic aneurysms.

Arteriosclerosis, thrombosis, and vascular biology. 2004;24(3):429-34. doi:

10.1161/01.ATV.0000118013.72016.ea. PubMed PMID: 14739119.

3.

Patelis N, Moris D, Schizas D, Damaskos C, Perrea D, Bakoyiannis C, et al.

Animal models in the research of abdominal aortic aneurysms development.

Physiological research. 2017;66(6):899-915. PubMed PMID: 28937252.

4.

Ailawadi G, Eliason JL, Upchurch GR, Jr. Current concepts in the

pathogenesis of abdominal aortic aneurysm. J Vasc Surg. 2003;38(3):584-8. Epub

2003/08/30. doi: S0741521403003240 [pii]. PubMed PMID: 12947280.

5.

Longo GM, Xiong W, Greiner TC, Zhao Y, Fiotti N, Baxter BT. Matrix

metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest.

2002;110(5):625-32. Epub 2002/09/05. doi: 10.1172/JCI15334. PubMed PMID:

12208863.

6.

Annambhotla S, Bourgeois S, Wang X, Lin PH, Yao Q, Chen C. Recent

advances in molecular mechanisms of abdominal aortic aneurysm formation. World

journal of surgery. 2008;32(6):976-86. doi: 10.1007/s00268-007-9456-x. PubMed

PMID: 18259804; PubMed Central PMCID: PMC2927355.

7.

Golledge J, Muller J, Daugherty A, Norman P. Abdominal aortic aneurysm:

pathogenesis and implications for management. Arterioscler Thromb Vasc Biol.

2006;26(12):2605-13. doi: 10.1161/01.ATV.0000245819.32762.cb. PubMed PMID:

16973970.

8.

Baud'huin M, Duplomb L, Teletchea S, Lamoureux F, Ruiz-Velasco C,

Maillasson M, et al. Osteoprotegerin: multiple partners for multiple functions. Cytokine

Growth Factor Rev. 2013;24(5):401-9. doi: 10.1016/j.cytogfr.2013.06.001. PubMed

PMID: 23827649.

9.

Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, et al.

Osteoprotegerin: a novel secreted protein involved in the regulation of bone density.

Cell. 1997;89(2):309-19. PubMed PMID: 9108485.

18

10.

Tsuda E, Goto M, Mochizuki S, Yano K, Kobayashi F, Morinaga T, et al.

Isolation of a novel cytokine from human fibroblasts that specifically inhibits

osteoclastogenesis. Biochem Biophys Res Commun. 1997;234(1):137-42. Epub

1997/05/08. doi: S0006291X97966031 [pii]. PubMed PMID: 9168977.

11.

Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, et al.

osteoprotegerin-deficient mice develop early onset osteoporosis and arterial

calcification. Genes & development. 1998;12(9):1260-8. PubMed PMID: 9573043;

PubMed Central PMCID: PMC316769.

12.

Sattler AM, Schoppet M, Schaefer JR, Hofbauer LC. Novel aspects on RANK

ligand and osteoprotegerin in osteoporosis and vascular disease. Calcified tissue

international. 2004;74(1):103-6. doi: 10.1007/s00223-003-0011-y. PubMed PMID:

14523602.

13.

Zhang J, Fu M, Myles D, Zhu X, Du J, Cao X, et al. PDGF induces

osteoprotegerin expression in vascular smooth muscle cells by multiple signal

pathways. FEBS Lett. 2002;521(1-3):180-4. Epub 2002/06/18. doi:

S0014579302028727 [pii]. PubMed PMID: 12067713.

14.

Jono S, Otsuki S, Higashikuni Y, Shioi A, Mori K, Hara K, et al. Serum

osteoprotegerin levels and long-term prognosis in subjects with stable coronary artery

disease. J Thromb Haemost. 2010;8(6):1170-5. doi: 10.1111/j.1538-7836.2010.03833.x.

PubMed PMID: 20230427.

15.

Schoppet M, Sattler AM, Schaefer JR, Herzum M, Maisch B, Hofbauer LC.

Increased osteoprotegerin serum levels in men with coronary artery disease. The Journal

of clinical endocrinology and metabolism. 2003;88(3):1024-8. doi: 10.1210/jc.2002020775. PubMed PMID: 12629080.

16.

Moran CS, McCann M, Karan M, Norman P, Ketheesan N, Golledge J.

Association of osteoprotegerin with human abdominal aortic aneurysm progression.

Circulation. 2005;111(23):3119-25. Epub 2005/06/09. doi:

CIRCULATIONAHA.104.464727 [pii]

10.1161/CIRCULATIONAHA.104.464727. PubMed PMID: 15939823.

17.

Koole D, Hurks R, Schoneveld A, Vink A, Golledge J, Moran CS, et al.

Osteoprotegerin is associated with aneurysm diameter and proteolysis in abdominal

aortic aneurysm disease. Arterioscler Thromb Vasc Biol. 2012;32(6):1497-504. Epub

2012/04/21. doi: ATVBAHA.111.243592 [pii]

19

10.1161/ATVBAHA.111.243592. PubMed PMID: 22516062.

18.

Bumdelger B, Kokubo H, Kamata R, Fujii M, Yoshimura K, Aoki H, et al.

Osteoprotegerin Prevents Development of Abdominal Aortic Aneurysms. PloS one.

2016;11(1):e0147088. doi: 10.1371/journal.pone.0147088. PubMed PMID: 26783750.

19.

Moran CS, Jose RJ, Biros E, Golledge J. Osteoprotegerin Deficiency Limits

Angiotensin II-Induced Aortic Dilatation and Rupture in the Apolipoprotein EKnockout Mouse. Arteriosclerosis, thrombosis, and vascular biology.

2014;34(12):2609-16. doi: 10.1161/ATVBAHA.114.304587. PubMed PMID:

25301844; PubMed Central PMCID: PMC4239170.

20.

Vorkapic E, Kunath A, Wagsater D. Effects of osteoprotegerin/TNFRSF11B

in two models of abdominal aortic aneurysms. Molecular medicine reports.

2018;18(1):41-8. doi: 10.3892/mmr.2018.8936. PubMed PMID: 29749489; PubMed

Central PMCID: PMC6059691.

21.

Daugherty A, Manning MW, Cassis LA. Antagonism of AT2 receptors

augments angiotensin II-induced abdominal aortic aneurysms and atherosclerosis. Br J

Pharmacol. 2001;134(4):865-70. Epub 2001/10/19. doi: 10.1038/sj.bjp.0704331.

PubMed PMID: 11606327.

22.

Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-beta signaling in

fibrosis. Growth Factors. 29(5):196-202. Epub 2011/07/12. doi:

10.3109/08977194.2011.595714. PubMed PMID: 21740331.

23.

Kavurma MM, Schoppet M, Bobryshev YV, Khachigian LM, Bennett MR.

TRAIL stimulates proliferation of vascular smooth muscle cells via activation of NFkappaB and induction of insulin-like growth factor-1 receptor. J Biol Chem.

2008;283(12):7754-62. Epub 2008/01/08. doi: M706927200 [pii]

10.1074/jbc.M706927200. PubMed PMID: 18178561.

24.

Wei W, Wang D, Shi J, Xiang Y, Zhang Y, Liu S, et al. Tumor necrosis factor

(TNF)-related apoptosis-inducing ligand (TRAIL) induces chemotactic migration of

monocytes via a death receptor 4-mediated RhoGTPase pathway. Mol Immunol.

47(15):2475-84. Epub 2010/07/20. doi: S0161-5890(10)00473-6 [pii]

10.1016/j.molimm.2010.06.004. PubMed PMID: 20638129.

25.

Leask A. Potential therapeutic targets for cardiac fibrosis: TGFbeta,

angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res.

2010;106(11):1675-80. doi: 10.1161/CIRCRESAHA.110.217737. PubMed PMID:

20

20538689.

26.

Malfait F. Vascular aspects of the Ehlers-Danlos Syndromes. Matrix biology :

journal of the International Society for Matrix Biology. 2018;71-72:380-95. doi:

10.1016/j.matbio.2018.04.013. PubMed PMID: 29709596.

27.

Dobrin PB, Mrkvicka R. Failure of elastin or collagen as possible critical

connective tissue alterations underlying aneurysmal dilatation. Cardiovasc Surg.

1994;2(4):484-8. Epub 1994/08/01. PubMed PMID: 7953454.

28.

Yurovsky VV. Tumor necrosis factor-related apoptosis-inducing ligand

enhances collagen production by human lung fibroblasts. Am J Respir Cell Mol Biol.

2003;28(2):225-31. Epub 2003/01/24. doi: 10.1165/rcmb.2002-0140OC. PubMed

PMID: 12540490.

29.

Trachet B, Aslanidou L, Piersigilli A, Fraga-Silva RA, Sordet-Dessimoz J,

Villanueva-Perez P, et al. Angiotensin II infusion into ApoE-/- mice: a model for aortic

dissection rather than abdominal aortic aneurysm? Cardiovascular research.

2017;113(10):1230-42. doi: 10.1093/cvr/cvx128. PubMed PMID: 28898997.

30.

Lederle FA. The natural history of abdominal aortic aneurysm. Acta Chir

Belg. 2009;109(1):7-12. Epub 2009/04/04. PubMed PMID: 19341189.

21

Figure legends

Figure 1. Opg deficiency tends to suppress AngII-induced aortic aneurysms

(A) Aortas of AngII-infused ApoE-/-Opg+/+ and ApoE-/-Opg-/- mice were categorized into three

groups based on diameter and the presence of visible hematoma (No Aneurysm, Aneurysm, and

Dissection groups). Scale bars indicate 1 mm. (B) External diameter of the SRA in AngII-infused

ApoE-/-Opg+/+ (gray, n=16) and ApoE-/-Opg-/- (white, n=16) mice. All measurements are shown as

box plots and each measurement is shown as a white circle (No Aneurysm), gray triangle

(Aneurysm), or black cross (Dissection). (C) The incidence (%) of aortic aneurysms is shown for

No Aneurysm (white), Aneurysm (gray), and Dissection (black) groups. Statistical significance:

p<0.05.

Figure 2. Opg deficiency tends to suppress AngII-induced aortic dilatation and promotes

adventitial thickening

(A) Representative cross sections of the aorta stained with HE, EVG, and AZAN. Areas selected

by boxes surrounded by a black dotted line are magnified below. Scale bars indicate 0.1 mm. (B)

Internal area of the suprarenal aorta (SRA) of ApoE-/-Opg+/+ (n=16) and ApoE-/-Opg-/- (n=16) mice.

Measurements for all samples are presented as box plots. Measurements for the three groups are

presented as bar graphs. n=4 and 8 for the No-aneurysm group, n=5 and 5 for the Aneurysm group,

and n=7 and 3 for the Dissection group in ApoE-/-Opg+/+ and ApoE-/-Opg-/- mice, respectively. (C)

Medial layer width of the SRA of AngII-infused mice in each group. N.S; not significant. (D)

Relative adventitial area of the SRA of AngII-infused mice in each group. Statistical significance:

p<0.05.

22

Figure 3. Collagen accumulation in aortas of ApoE-/-Opg-/- mice

(A) Representative immunofluorescence images of aortas of AngII-infused mice stained with an

anti-collagen I antibody. Boxed areas (with white dotted lines) are magnified below. Scale bars

indicate 100 μm. (B) Percent area of collagen I expression in aortas of ApoE-/-Opg+/+ (n=16) and

ApoE-/-Opg-/- (n=16) mice. Measurements for all samples are presented as box plots.

Measurements for the three groups are presented as bar graphs (n=4 and 8 for the No Aneurysm

group, n=5 and 5 for the Aneurysm group, and n=7 and 3 for the Dissection group in ApoE-/Opg+/+ and ApoE-/-Opg-/- mice, respectively). (C) Tgf-β1 mRNA expression in the SRA at days 0,

7, and 28 after initiation of AngII infusion in ApoE-/-Opg+/+ (n=4, 5, 5) and ApoE-/-Opg-/- (n=5, 5,

5) mice. Statistical significance: p<0.05.

Figure 4. Accumulation of myofibroblasts in adventitias of AngII-infused ApoE-/-Opg-/- mice.

(A) Representative double-immunofluorescence images of aortas after AngII infusion with antiSMA (green) and anti-vimentin (red) antibodies. Scale bars indicate 100 μm. Areas selected by

the white box (dotted line) are magnified below. Nuclei were stained with DAPI (blue). Scale bars

indicate 25 μm. Medial layer (m), Adventitial layer (a), hematoma (b). The two arrowheads show

borders of the medial layer. The white dotted line in the magnified panels indicates the border of

the medial and adventitial layers. (B) Percent area of SMA expression in adventitias of ApoE-/Opg+/+ (n=16) and ApoE-/-Opg-/- (n=16) mice. Measurements for all samples are presented as box

plots. Measurements for the three groups are presented as bar graphs. n=4 and 8 for the No

Aneurysm group, n=5 and 5 for the Aneurysm group, and n=7 and 3 for the Dissection group in

ApoE-/-Opg+/+ and ApoE-/-Opg-/- mice, respectively. Statistical significance: p<0.05.

23

Figure 5. Trail upregulation in aneurysm tissue of AngII-infused ApoE-/-Opg-/- mice.

(A) Representative immunofluorescence images of aortic tissue sections from AngII-infused mice

stained with anti-Trail (green) antibody. Scale bars indicate 100 μm. Areas selected by the white

box (dotted line) in the Aneurysm group are magnified below. (B) Magnified

immunofluorescence images of aortic tissue sections from the AngII-infused Aneurysm group

stained with anti-Trail (green; a, f), anti-SMA (green; b, g), anti-vimentin (red; c, h), anti-Ki67

(red; d, i), and anti-F4/80 (red; e, j) antibodies in ApoE-/-Opg+/+ and ApoE-/-Opg-/- mice. Nuclei

were stained with DAPI (blue; c-DAPI, h-DAPI). Scale bars indicate 25 μm. Medial layer (m),

adventitial layer (a). The two arrowheads show borders of the medial layer. The white dotted line

in the magnified panels indicates the border of the medial and adventitial layers. Small arrows in

panel j indicate large round-shaped macrophages infiltrating the adventitia. Statistical

significance: p<0.05. (C) Percent area of Trail expression in medial and adventitial layers of

ApoE-/-Opg+/+ (n=16) and ApoE-/-Opg-/- (n=16) mice. Measurements for all samples are presented

as box plots. Measurements for the three groups are presented as bar graphs. n=4 and 8 for the

No Aneurysm group, n=5 and 5 for the Aneurysm group, and n=7 and 3 for the Dissection group

in ApoE-/-Opg+/+ and ApoE-/-Opg-/- mice, respectively. Statistical significance: p<0.05.

24

Bumdelger et al.

Figure 1

Aneurysm

Dissection

ApoE-/Opg +/+

No-aneurysm

Aneurysm

Dissection

p=0.21

2.5

ApoE -/- Opg +/+

2.0

ApoE -/- Opg -/-

1.5

Dissection

Aneurysm

No-aneurysm

1.0

0.5

p=0.09

100

3.0

AngII

% of Incidence

External diameter of SRA(mm)

ApoE -/Opg -/-

No-aneurysm

80

Dissection

Aneurysm

No-aneurysm

60

40

20

ApoE -/Opg +/+

ApoE -/Opg -/-

No-aneurysm

Aneurysm

ApoE -/- Opg +/+

Bumdelger et al.

Figure 2

HE

EVG

AZAN

Dissection

No-aneurysm

Aneurysm

ApoE -/- Opg

-/-

Dissection

Internal area of

SRA(mm2 )

0.5

1.0

1.5

p=0.04

ApoE -/- ApoE -/Opg +/+ Opg -/-

p=0.07

p=0.01

ApoE -/- ApoE -/Opg +/+ Opg -/-

N.S.

N.S.

N.S.

ApoE -/Opg -/-

N.S.

N.S.

p=0.13

ApoE -/Opg +/+

0.5

0.4

0.3

0.2

0.1

1.0

0.8

0.6

0.4

0.2

Width of medial

layer(mm)

Relative area of

adventitia

No-aneurysm

Aneurysm

Dissection

No-aneurysm

Aneurysm

Dissection

All samples

No-aneurysm

Aneurysm

Dissection

Bumdelger et al.

Figure 3

ApoE -/- Opg +/+

Aneurysm

Dissection

No-aneurysm

Aneurysm

Dissection

Collagen I

No-aneurysm

ApoE -/- Opg -/-

N.S.

p<0.01

p<0.05

p<0.05

60

All samples

No-aneurysm

Aneurysm

Dissection

40

20

ApoE -/Opg +/+

ApoE -/Opg -/-

TGF-b1 expression in SRA

% of Collagen I expression

area in aorta

2.52.5

p=0.05

p=0.01

N.S.

N.S.

2.02

1.51.5

1.01

0.50.5

00 0

0d

7d

28d

AngII

ApoE -/+/+

Opg

0d

7d

28d

AngII

ApoE -/Opg -/-

Bumdelger et al.

Figure 4

ApoE -/- Opg -/-

ApoE -/- Opg +/+

Dissection

Aneurysm

No-aneurysm

Aneurysm

Dissection

Merged

Vimentin

SMA

No-aneurysm

DAPI

% of SMA expression area

in the adventitial layer of aorta

N.S.

p<0.01

N.S.

p<0.05

30

All samples

No-aneurysm

Aneurysm

Dissection

20

10

ApoE -/Opg +/+

ApoE -/Opg -/-

Bumdelger et al.

Figure 5

ApoE -/- Opg -/-

ApoE -/- Opg +/+

Aneurysm

Dissection

No-aneurysm

Aneurysm

Dissection

Trail

No-aneurysm

ApoE -/- Opg -/-

ApoE -/- Opg +/+

Aneurysm

Trail

SMA

Vimentin

Trail

SMA

Vimentin

% of TRAIL expression area

in aorta

Ki67

Aneurysm

F4/80

DAPI

Ki67

p<0.05

p<0.01

N.S.

p<0.01

30

All samples

No-aneurysm

Aneurysm

Dissection

20

10

ApoE -/Opg +/+

ApoE -/Opg -/-

F4/80

DAPI

...

参考文献をもっと見る