リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Influence of UGT1A1 Genetic Variants on Free Bilirubin Levels in Japanese Newborns: A Preliminary Study」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Influence of UGT1A1 Genetic Variants on Free Bilirubin Levels in Japanese Newborns: A Preliminary Study

Hanafusa, Hiroaki Abe, Shinya Ohyama, Shohei Kyono, Yuki Kido, Takumi Nakasone, Ruka Ashina, Mariko Tanimura, Kenji Nozu, Kandai Fujioka, Kazumichi 神戸大学

2022.10

概要

Background: Free bilirubin (Bf) is a better marker than total serum bilirubin (TSB) for predicting bilirubin encephalopathy (BE). To date, two UGT1A1 genetic variants (rs4148323 and rs3064744) have been associated with neonatal hyperbilirubinemia; however, the direct association between UGT1A1 variants and Bf levels in newborns has not been elucidated. Methods: We retrospectively analyzed the clinical data of 484 infants, including the genotype data of two UGT1A1 genetic variants. We divided the infants into a high Bf group (Bf ≥ 1.0 µg/dL, n = 77) and a non-high Bf group (Bf < 1.0 µg/dL, n = 407), based on the peak Bf values. Logistic regression analysis was performed to calculate the odds ratios (ORs) for each variant allele compared to wild-type alleles. Results: The frequencies of the A allele in rs4148323 and (TA)7 allele in rs3064744 in the high Bf group (29% and 4%, respectively) were significantly different from those in the non-high Bf group (16% and 12%, respectively). In logistic regression analysis, for rs4148323, the A allele was significantly associated with an increased risk of hyper-free bilirubinemia over the G allele (adjusted OR: 1.80, 95% confidence interval [CI]: 1.19–2.72, p < 0.01). However, for rs3064744, the (TA)7 allele was significantly associated with a decreased risk of hyper-free bilirubinemia over the (TA)6 allele (adjusted OR: 0.42, 95% CI: 0.18–0.95, p = 0.04). Conclusions: This study is the first to show that the A allele in rs4148323 is a risk factor and that the (TA)7 allele in rs3064744 is a protective factor for developing hyper-free bilirubinemia in Japanese newborns.

参考文献

1. American Academy of Pediatrics Subcommittee on Hyperbilirubinemia. Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation. Pediatrics 2004, 114, 297–316. [CrossRef] [PubMed]

2. Johnson, L.; Bhutani, V.K. The Clinical Syndrome of Bilirubin-Induced Neurologic Dysfunction. Semin. Perinatol. 2011, 35, 101–113. [CrossRef] [PubMed]

3. Le Pichon, J.B.; Riordan, S.M.; Watchko, J.; Shapiro, S.M. The Neurological Sequelae of Neonatal Hyperbilirubinemia: Definitions, Diagnosis and Treatment of the Kernicterus Spectrum Disorders (KSDs). Curr. Pediatr. Rev. 2017, 13, 199–209. [PubMed]

4. Diamond, I.; Schmid, R. Experimental Bilirubin Encephalopathy. The Mode of Entry of bilirubin-14C Into the Central Nervous System. J. Clin. Investig. 1966, 45, 678–689. [CrossRef] [PubMed]

5. Burgess, G.H.; Oh, W.; Bratlid, D.; Brubakk, A.M.; Cashore, W.J.; Stonestreet, B.S. The Effects of Brain Blood Flow on Brain Bilirubin Deposition in Newborn Piglets. Pediatr. Res. 1985, 19, 691–696. [CrossRef] [PubMed]

6. Ahlfors, C.E.; Wennberg, R.P.; Ostrow, J.D.; Tiribelli, C. Unbound (Free) Bilirubin: Improving the Paradigm for Evaluating Neonatal Jaundice. Clin. Chem. 2009, 55, 1288–1299. [CrossRef]

7. Cashore, W.J.; Oh, W. Unbound Bilirubin and Kernicterus in Low-Birth-Weight Infants. Pediatrics 1982, 69, 481–485. [CrossRef]

8. Funato, M.; Tamai, H.; Shimada, S.; Nakamura, H. Vigintiphobia, Unbound Bilirubin, and Auditory Brainstem Responses. Pediatrics 1994, 93, 50–53. [CrossRef] [PubMed]

9. Nakamura, H.; Yonetani, M.; Uetani, Y.; Funato, M.; Lee, Y. Determination of Serum Unbound Bilirubin for Prediction of Kernicterus in Low Birthweight Infants. Acta Paediatr. Jpn. 1992, 34, 642–647. [CrossRef] [PubMed]

10. Hegyi, T.; Kleinfeld, A. Neonatal Hyperbilirubinemia and the Role of Unbound Bilirubin. J. Matern. Fetal Neonatal Med. 2021, 1–7. [CrossRef]

11. Morioka, I.; Nakamura, H.; Koda, T.; Sakai, H.; Kurokawa, D.; Yonetani, M.; Morisawa, T.; Katayama, Y.; Wada, H.; Funato, M.; et al. Serum Unbound Bilirubin as a Predictor for Clinical Kernicterus in Extremely Low Birth Weight Infants at a Late Age in the Neonatal Intensive Care Unit. Brain Dev. 2015, 37, 753–757. [CrossRef] [PubMed]

12. Morioka, I. Hyperbilirubinemia in Preterm Infants in Japan: New Treatment Criteria. Pediatr. Int. 2018, 60, 684–690. [CrossRef]

13. Abe, S.; Fujioka, K.; Nakasone, R.; Suga, S.; Ashina, M.; Nishida, K.; Wong, R.J.; Iijima, K. Bilirubin/Albumin (B/A) Ratios Correlate With Unbound Bilirubin Levels in Preterm Infants. Pediatr. Res. 2021, 89, 1427–1431. [CrossRef] [PubMed]

14. Mackenzie, P.I.; Owens, I.S.; Burchell, B.; Bock, K.W.; Bairoch, A.; Bélanger, A.; Fournel-Gigleux, S.; Green, M.; Hum, D.W.; Iyanagi, T.; et al. The UDP Glycosyltransferase Gene Superfamily: Recommended Nomenclature Update Based on Evolutionary Divergence. Pharmacogenetics 1997, 7, 255–269. [CrossRef] [PubMed]

15. Yang, H.; Wang, Q.; Zheng, L.; Lin, M.; Zheng, X.B.; Lin, F.; Yang, L.Y. Multiple Genetic Modifiers of Bilirubin Metabolism Involvement in Significant Neonatal Hyperbilirubinemia in Patients of Chinese Descent. PLoS ONE 2015, 10, e0132034. [CrossRef] [PubMed]

16. Weng, Y.H.; Chiu, Y.W.; Cheng, S.W.; Yang, C.Y. Risk Assessment of Gene Variants for Neonatal Hyperbilirubinemia in Taiwan. B.M.C. Pediatr. 2016, 16, 144. [CrossRef]

17. Wu, X.J.; Zhong, D.N.; Xie, X.Z.; Ye, D.Z.; Gao, Z.Y. UGT1A1 Gene Mutations and Neonatal Hyperbilirubinemia in Guangxi Heiyi Zhuang and Han Populations. Pediatr. Res. 2015, 78, 585–588. [CrossRef]

18. Zhou, Y.Y.; Lee, L.Y.; Ng, S.Y.; Hia, C.P.; Low, K.T.; Chong, Y.S.; Goh, D.L. UGT1A1 Haplotype Mutation Among Asians in Singapore. Neonatology 2009, 96, 150–155. [CrossRef]

19. Akaba, K.; Kimura, T.; Sasaki, A.; Tanabe, S.; Wakabayashi, T.; Hiroi, M.; Yasumura, S.; Maki, K.; Aikawa, S.; Hayasaka, K. Neonatal Hyperbilirubinemia and a Common Mutation of the Bilirubin Uridine Diphosphate-Glucuronosyltransferase Gene in Japanese. J. Hum. Genet. 1999, 44, 22–25. [CrossRef]

20. Sato, H.; Uchida, T.; Toyota, K.; Kanno, M.; Hashimoto, T.; Watanabe, M.; Nakamura, T.; Tamiya, G.; Aoki, K.; Hayasaka, K. Association of Breast-Fed Neonatal Hyperbilirubinemia With UGT1A1 Polymorphisms: 211G>A (G71R) Mutation Becomes a Risk Factor Under Inadequate Feeding. J. Hum. Genet. 2013, 58, 7–10. [CrossRef]

21. Zhou, Y.; Wang, S.N.; Li, H.; Zha, W.; Peng, Q.; Li, S.; Chen, Y.; Jin, L. Quantitative Trait Analysis of Polymorphisms in Two Bilirubin Metabolism Enzymes to Physiologic Bilirubin Levels in Chinese Newborns. J. Pediatr. 2014, 165, 1154–1160.e1. [CrossRef] [PubMed]

22. Agrawal, S.K.; Kumar, P.; Rathi, R.; Sharma, N.; Das, R.; Prasad, R.; Narang, A. UGT1A1 Gene Polymorphisms in North Indian Neonates Presenting With Unconjugated Hyperbilirubinemia. Pediatr. Res. 2009, 65, 675–680. [CrossRef]

23. Ergin, H.; Bican, M.; Atalay, O.E. A Causal Relationship Between UDP-Glucuronosyltransferase 1A1 Promoter Polymorphism and Idiopathic Hyperbilirubinemia in Turkish Newborns. Turk. J. Pediatr. 2010, 52, 28–34. [PubMed]

24. Newman, T.B.; Easterling, M.J.; Goldman, E.S.; Stevenson, D.K. Laboratory Evaluation of Jaundice in Newborns. Frequency, Cost, and Yield. Am. J. Dis. Child. 1990, 144, 364–368. [CrossRef]

25. Carmel, R.; Wong, E.T.; Weiner, J.M.; Johnson, C.S. Racial Differences in Serum Total Bilirubin Levels in Health and in Disease (Pernicious Anemia). JAMA 1985, 253, 3416–3418. [CrossRef] [PubMed]

26. Ho, N.K. Neonatal Jaundice in Asia. Baillieres Clin. Haematol. 1992, 5, 131–142. [CrossRef]

27. Tsao, P.C.; Yeh, H.L.; Chang, Y.C.; Chiang, P.H.; Shiau, Y.S.; Chiang, S.H.; Soong, W.J.; Jeng, M.J.; Hsiao, K.J. Outcomes of Neonatal Jaundice in Taiwan. Arch. Dis. Child. 2018, 103, 927–929. [CrossRef] [PubMed]

28. Alkén, J.; Håkansson, S.; Ekéus, C.; Gustafson, P.; Norman, M. Rates of Extreme Neonatal Hyperbilirubinemia and Kernicterus in Children and Adherence to National Guidelines for Screening, Diagnosis, and Treatment in Sweden. JAMA Netw. Open 2019, 2, e190858. [CrossRef]

29. Lee, Y.K.; Daito, Y.; Katayama, Y.; Minami, H.; Negishi, H. The Significance of Measurement of Serum Unbound Bilirubin Concentrations in High-Risk Infants. Pediatr. Int. 2009, 51, 795–799. [CrossRef] [PubMed]

30. Nakamura, H.; Lee, Y. Microdetermination of Unbound Bilirubin in Icteric Newborn Sera: An Enzymatic Method Employing Peroxidase and Glucose Oxidase. Clin. Chim. Acta 1977, 79, 411–417. [PubMed]

31. Shimabuku, R.; Nakamura, H. Total and Unbound Bilirubin Determination Using an Automated Peroxidase Micromethod. Kobe J. Med. Sci. 1982, 28, 91–104. [PubMed]

32. Yokota, T.; Morioka, I.; Kodera, T.; Morisawa, T.; Sato, I.; Kawano, S.; Koda, T.; Matsuo, K.; Fujioka, K.; Morikawa, S.; et al. Novel Treatment Strategy for Japanese Newborns With High Serum Unbound Bilirubin. Pediatr. Int. 2013, 55, 54–59. [CrossRef] [PubMed]

33. Kringen, M.K.; Piehler, A.P.; Grimholt, R.M.; Opdal, M.S.; Haug, K.B.; Urdal, P. Serum Bilirubin Concentration in Healthy Adult North-Europeans Is Strictly Controlled by the UGT1A1 TA-Repeat Variants. PLoS ONE 2014, 9, e90248. [CrossRef] [PubMed]

34. Ebbesen, F.; Knudsen, A. The Possible Risk of Bilirubin Encephalopathy as Predicted by Plasma Parameters in Neonates With Previous Severe Asphyxia. Eur. J. Pediatr. 1992, 151, 910–912. [CrossRef] [PubMed]

35. Tadaka, S.; Hishinuma, E.; Komaki, S.; Motoike, I.N.; Kawashima, J.; Saigusa, D.; Inoue, J.; Takayama, J.; Okamura, Y.; Aoki, Y.; et al. jMorp Updates in 2020: Large Enhancement of Multi-omics Data Resources on the General Japanese Population. Nucleic Acids Res. 2021, 49, D536–D544. [CrossRef] [PubMed]

36. Akaba, K.; Kimura, T.; Sasaki, A.; Tanabe, S.; Ikegami, T.; Hashimoto, M.; Umeda, H.; Yoshida, H.; Umetsu, K.; Chiba, H.; et al. Neonatal Hyperbilirubinemia and Mutation of the Bilirubin Uridine Diphosphate-Glucuronosyltransferase Gene: A Common Missense Mutation Among Japanese, Koreans and Chinese. Biochem. Mol. Biol. Int. 1998, 46, 21–26. [CrossRef]

37. Amin, S.B. Bilirubin Binding Capacity in the Preterm Neonate. Clin. Perinatol. 2016, 43, 241–257. [CrossRef] [PubMed]

38. Morioka, I.; Iwatani, S.; Koda, T.; Iijima, K.; Nakamura, H. Disorders of Bilirubin Binding to Albumin and Bilirubin-Induced Neurologic Dysfunction. Semin. Fetal Neonatal Med. 2015, 20, 31–36. [CrossRef] [PubMed]

39. Koiwai, O.; Nishizawa, M.; Hasada, K.; Aono, S.; Adachi, Y.; Mamiya, N.; Sato, H. Gilbert’s Syndrome Is Caused by a Heterozygous Missense Mutation in the Gene for Bilirubin UDP-Glucuronosyltransferase. Hum. Mol. Genet. 1995, 4, 1183–1186. [CrossRef]

40. Long, J.; Zhang, S.; Fang, X.; Luo, Y.; Liu, J. Association of Neonatal Hyperbilirubinemia With Uridine Diphosphate- Glucuronosyltransferase 1A1 Gene Polymorphisms: Meta-analysis. Pediatr. Int. 2011, 53, 530–540. [CrossRef]

41. Wei, N.; Chen, Z.; Xue, Z.; Zhu, Y. Polymorphism of VEGF Gene in Susceptibility to Chronic Immune-Mediated Inflammatory Diseases: A Meta-analysis. Rheumatol. Int. 2015, 35, 1351–1360. [CrossRef]

42. Wang, W.; Ma, H.; Lu, L.; Sun, G.; Liu, D.; Zhou, Y.; Tong, Y.; Lu, Z. Association Between Thrombin-Activatable Fibrinolysis Inhibitor Gene Polymorphisms and Venous Thrombosis Risk: A Meta-analysis. Blood Coagul. Fibrinolysis 2016, 27, 419–430. [CrossRef] [PubMed]

43. Fang, F.; Wang, J.; Yao, L.; Yu, X.J.; Yu, L.; Yu, L. Relationship Between XRCC3 T241M Polymorphism and Gastric Cancer Risk: A Meta-analysis. Med. Oncol. 2011, 28, 999–1003. [CrossRef]

44. Johnson, A.D.; Kavousi, M.; Smith, A.V.; Chen, M.H.; Dehghan, A.; Aspelund, T.; Lin, J.P.; van Duijn, C.M.; Harris, T.B.; Cupples, L.A.; et al. Genome-Wide Association Meta-analysis for Total Serum Bilirubin Levels. Hum. Mol. Genet. 2009, 18, 2700–2710. [CrossRef] [PubMed]

45. Sanna, S.; Busonero, F.; Maschio, A.; McArdle, P.F.; Usala, G.; Dei, M.; Lai, S.; Mulas, A.; Piras, M.G.; Perseu, L.; et al. Common Variants in the SLCO1B3 Locus Are Associated With Bilirubin Levels and Unconjugated Hyperbilirubinemia. Hum. Mol. Genet. 2009, 18, 2711–2718. [CrossRef] [PubMed]

46. Morioka, I.; Nakamura, H. Treatment Criteria for Infants With Hyperbilirubinemia in Japan. Semin. Perinatol. 2021, 45, 151352. [CrossRef]

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る