リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The effects of peripheral compression, side-dominance and age on knee joint position sense」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The effects of peripheral compression, side-dominance and age on knee joint position sense

JANOS NEGYESI 東北大学

2020.03.25

概要

Background (研究背景): Sensory inputs, including proprioceptive, somatosensory and visual information, are key determinants of motor output and aberrations in sensory function contribute to motor dysfunction. Experimental studies examined the possibility that increased afferent input in the form of compression, mechanical vibration and electrical stimulation could potentiate proprioceptive motor control. However, results are contradictory concerning the effects of peripheral compression on knee joint position sense, and the mechanisms that underlie these effects are incompletely understood. Athletes use compression garments (CGs) to improve sport performance, accelerate rehabilitation from knee injuries or to enhance joint position sense (JPS). However, its position around the knee may affect knee JPS. Furthermore, right- and left-side dominant individuals reveal target-matching asymmetries between joints of the dominant- and non-dominant upper limbs. However, it is unclear if such asymmetries are also present in lower limb’s joints. Although right-handed young adults perform target- matching tasks more accurately with the non-dominant compared to the dominant limb, it is unclear if age affects this disparity.

Aims (研究目的): The aim of the present thesis was therefore to examine the effects of peripheral compression, side-dominance and age on knee joint position sense. To that purpose, I determined the effects of an above-knee CG on passive knee joint position sense, and also examined the effects of CG position around the knee on active knee joint position sense in healthy populations. Moreover, the effects of side-dominance and age on passive knee joint repositioning behaviour is also described in the thesis.

Materials and Methods (研究方法): To test these models, I performed a series of experiments using an isokinetic dynamometer (HUMAC NORM, Computer Sports Medicine Inc., Stoughton, MA). In each study, healthy subjects performed active or passive knee joint position-matching task. In those studies investigating the effect of peripheral compression on knee JPS, I also determined the magnitude of tissue compression by measuring anatomical thigh and calf cross sectional area (CSA) in standing using magnetic resonance imaging (MRI).

Results (研究結果): While applying an above-knee CG failed to improve passive knee JPS, the placement of CG around the knee joint modifies active knee JPS so that a below-knee CG reduced absolute repositioning errors without limiting the knee range of motion and mobility. Although right-side dominant participants tended to perform this passive target-matching task more accurately with the non-dominant leg compared to left-side dominant participants, it is more likely that healthy aging and leg dominance interact and produce age-specific modifications in JPS by producing less absolute and relative errors when matching with their dominant leg.

Conclusion (結論): Overall, the present thesis help us better understand how the application of a CG can decrease the risk of musculoskeletal injuries during sport activities by influencing active knee JPS and how age and side-dominance affects passive target matching behaviour. In conclusion, the present thesis provides clear evidence that optimal peripheral compression, side-dominance and age affect knee JPS.

この論文で使われている画像

参考文献

1. Gandevia, S.C., K.M. Refshauge, and D.F. Collins, Proprioception: peripheral inputs and perceptual interactions. Adv Exp Med Biol, 2002. 508: p. 61-8.

2. Matthews, P.B., Where does Sherrington's "muscular sense" originate? Muscles, joints, corollary discharges? Annu Rev Neurosci, 1982. 5: p. 189-218.

3. McCloskey, D.I., Kinesthetic sensibility. Physiol Rev, 1978. 58(4): p. 763-820.

4. Proske, U., What is the role of muscle receptors in proprioception? Muscle Nerve, 2005. 31(6): p. 780-7.

5. Lephart, S.M., B.L. Riemann, and F.H. Fu, Introduction to the sensorimotor system. Proprioception and Neuromuscular Control in Joint Stability, 2000: p. Xvii-Xxiv.

6. Riemann, B.L. and S.M. Lephart, The sensorimotor system, part I: The physiologic basis of functional joint stability. Journal of Athletic Training, 2002. 37(1): p. 71-79.

7. Riemann, B.L. and S.M. Lephart, The sensorimotor system, part II: The role of proprioception in motor control and functional joint stability. Journal of Athletic Training, 2002. 37(1): p. 80-84.

8. Hung, Y.J., Neuromuscular control and rehabilitation of the unstable ankle. World Journal of Orthopedics, 2015. 6(5): p. 434-438.

9. Proske, U. and S.C. Gandevia, The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev, 2012. 92(4): p. 1651-97.

10. Schultz, S.K., Principles of neural science, 4th edition. American Journal of Psychiatry, 2001. 158(4): p. 662-662.

11. Prochazka, A. and M. Gorassini, Models of ensemble firing of muscle spindle afferents recorded during normal locomotion in cats. Journal of Physiology-London, 1998. 507(1): p. 277-291.

12. Styf, J., The effects of functional knee bracing on muscle function and performance. Sports Med, 1999. 28(2): p. 77-81.

13. Beliard, S., et al., Compression garments and exercise: no influence of pressure applied. J Sports Sci Med, 2015. 14(1): p. 75-83.

14. Collins, D.F. and A. Prochazka, Movement illusions evoked by ensemble cutaneous input from the dorsum of the human hand. J Physiol, 1996. 496 ( Pt 3): p. 857-71.

15. Van Tiggelen, D., P. Coorevits, and E. Witvrouw, The use of a neoprene knee sleeve to compensate the deficit in knee joint position sense caused by muscle fatigue. Scand J Med Sci Sports, 2008. 18(1): p. 62-6.

16. Miyamoto, N., et al., Effect of pressure intensity of graduated elastic compression stocking on muscle fatigue following calf-raise exercise. J Electromyogr Kinesiol, 2011. 21(2): p. 249-54.

17. Ghai, S., M.W. Driller, and R.S.W. Masters, The influence of below-knee compression garments on knee-joint proprioception. Gait Posture, 2018. 60: p. 258-261.

18. Friden, T., et al., Review of knee proprioception and the relation to extremity function after an anterior cruciate ligament rupture. J Orthop Sports Phys Ther, 2001. 31(10): p. 567-76.

19. Herrington, L., C. Simmonds, and J. Hatcher, The effect of a neoprene sleeve on knee joint position sense. Res Sports Med, 2005. 13(1): p. 37-46.

20. Kaminski, T.W. and D.H. Perrin, Effect of prophylactic knee bracing on balance and joint position sense. J Athl Train, 1996. 31(2): p. 131-6.

21. Gandevia, S.C., et al., Motor commands contribute to human position sense. J Physiol, 2006. 571(Pt 3): p. 703-10.

22. Jerosch, J. and M. Prymka, Knee joint proprioception in normal volunteers and patients with anterior cruciate ligament tears, taking special account of the effect of a knee bandage. Arch Orthop Trauma Surg, 1996. 115(3-4): p. 162-6.

23. Beynnon, B.D., L. Good, and M.A. Risberg, The effect of bracing on proprioception of knees with anterior cruciate ligament injury. J Orthop Sports Phys Ther, 2002. 32(1): p. 11-5.

24. Birmingham, T.B., et al., Effect of a neoprene sleeve on knee joint kinesthesis: influence of different testing procedures. Med Sci Sports Exerc, 2000. 32(2): p. 304-8.

25. Birmingham, T.B., et al., Effect of a neoprene sleeve on knee joint position sense during sitting open kinetic chain and supine closed kinetic chain tests. Am J Sports Med, 1998. 26(4): p. 562-6.

26. Ali, A., R.H. Creasy, and J.A. Edge, The effect of graduated compression stockings on running performance. J Strength Cond Res, 2011. 25(5): p. 1385-92.

27. Kemmler, W., et al. Effect of compression stockings on running performance in men runners. Journal of strength and conditioning research, 2009. 23, 101-105 DOI: 10.1519/JSC.0b013e31818eaef3.

28. Robbins, S., E. Waked, and R. Rappel, Ankle taping improves proprioception before and after exercise in young men. Br J Sports Med, 1995. 29(4): p. 242-7.

29. Cameron, M.L., R.D. Adams, and C.G. Maher, The effect of neoprene shorts on leg proprioception in Australian football players. J Sci Med Sport, 2008. 11(3): p. 345-52.

30. Newcomer, K., et al., The effects of a lumbar support on repositioning error in subjects with low back pain. Arch Phys Med Rehabil, 2001. 82(7): p. 906-10.

31. Perlau, R., C. Frank, and G. Fick, The effect of elastic bandages on human knee proprioception in the uninjured population. Am J Sports Med, 1995. 23(2): p. 251-5.

32. Bottoni, G., et al., The Effect of Uphill and Downhill Walking on Joint-Position Sense: A Study on Healthy Knees. J Sport Rehabil, 2015. 24(4): p. 349-52.

33. Tiggelen, D.V., P. Coorevits, and E. Witvrouw, The effects of a neoprene knee sleeve on subjects with a poor versus good joint position sense subjected to an isokinetic fatigue protocol. Clin J Sport Med, 2008. 18(3): p. 259-65.

34. Lien, N., et al., What is the Effect of Compression Garments on a Novel Kick Accuracy Task? International Journal of Sports Science & Coaching, 2014. 9(2): p. 357-365.

35. Negyesi, J., et al., An above-knee compression garment does not improve passive knee joint position sense in healthy adults. PLoS One, 2018. 13(9): p. e0203288.

36. Cholewicki, J., K.R. Shah, and K.C. McGill, The effects of a 3-week use of lumbosacral orthoses on proprioception in the lumbar spine. J Orthop Sports Phys Ther, 2006. 36(4): p. 225-31.

37. Zhang, L., et al., Position of compression garment around the knee affects healthy adults' knee joint position sense acuity. Human Movement Science, 2019. 67.

38. Goodale, M.A., Hemispheric differences in motor control. Behav Brain Res, 1988. 30(2): p. 203-14.

39. Gonzalez, C.L. and M.A. Goodale, Hand preference for precision grasping predicts language lateralization. Neuropsychologia, 2009. 47(14): p. 3182-9.

40. Stone, K.D., D.C. Bryant, and C.L. Gonzalez, Hand use for grasping in a bimanual task: evidence for different roles? Exp Brain Res, 2013. 224(3): p. 455-67.

41. Perelle, I.B. and L. Ehrman, On the other hand. Behav Genet, 2005. 35(3): p. 343-50.

42. Vuoksimaa, E., et al., Origins of handedness: a nationwide study of 30,161 adults. Neuropsychologia, 2009. 47(5): p. 1294-301.

43. Sartarelli, M., Handedness, Earnings, Ability and Personality. Evidence from the Lab. PLoS One, 2016. 11(10): p. e0164412.

44. Roy, E.A. and C. MacKenzie, Handedness effects in kinesthetic spatial location judgements. Cortex, 1978. 14(2): p. 250-8.

45. Nishizawa, S., Different pattern of hemisphere specialization between identical kinesthetic spatial and weight discrimination tasks. Neuropsychologia, 1991. 29(4): p. 305-12.

46. Kurian, G., N.K. Sharma, and K. Santhakumari, Left-arm dominance in active positioning. Percept Mot Skills, 1989. 68(3 Pt 2): p. 1312-4.

47. Goble, D.J., C.A. Lewis, and S.H. Brown, Upper limb asymmetries in the utilization of proprioceptive feedback. Exp Brain Res, 2006. 168(1-2): p. 307-11.

48. Goble, D.J. and S.H. Brown, Upper limb asymmetries in the matching of proprioceptive versus visual targets. J Neurophysiol, 2008. 99(6): p. 3063-74.

49. Han, J., et al., Proprioceptive performance of bilateral upper and lower limb joints: side-general and site-specific effects. Exp Brain Res, 2013. 226(3): p. 313-23.

50. Goble, D.J. and S.H. Brown, Task-dependent asymmetries in the utilization of proprioceptive feedback for goal-directed movement. Exp Brain Res, 2007. 180(4): p. 693-704.

51. Naito, E., et al., Dominance of the right hemisphere and role of area 2 in human kinesthesia. J Neurophysiol, 2005. 93(2): p. 1020-34.

52. Sainburg, R.L., Evidence for a dynamic-dominance hypothesis of handedness. Exp Brain Res, 2002. 142(2): p. 241-58.

53. Sainburg, R.L., Handedness: differential specializations for control of trajectory and position. Exerc Sport Sci Rev, 2005. 33(4): p. 206-13.

54. Schmidt, L., et al., Differential effects of galvanic vestibular stimulation on arm position sense in right- vs. left-handers. Neuropsychologia, 2013. 51(5): p. 893-9.

55. Kuypers, H.G., A new look at the organization of the motor system. Prog Brain Res, 1982. 57: p. 381-403.

56. Müller, F., et al., Residual sensorimotor functions in a patient after right-sided hemispherectomy. Neuropsychologia, 1991. 29(2): p. 125-45.

57. Scott, S.H. and G.E. Loeb, The computation of position sense from spindles in mono- and multiarticular muscles. J Neurosci, 1994. 14(12): p. 7529-40.

58. Goble, D.J., B.C. Noble, and S.H. Brown, Proprioceptive target matching asymmetries in left-handed individuals. Exp Brain Res, 2009. 197(4): p. 403-8.

59. Bullock-Saxton, J.E., W.J. Wong, and N. Hogan, The influence of age on weight- bearing joint reposition sense of the knee. Exp Brain Res, 2001. 136(3): p. 400-6.

60. Naughton, J., R. Adams, and C. Maher, Discriminating overhead points of contact after arm raising. Percept Mot Skills, 2002. 95(3 Pt 2): p. 1187-95.

61. Adamo, D.E., N.B. Alexander, and S.H. Brown, The influence of age and physical activity on upper limb proprioceptive ability. J Aging Phys Act, 2009. 17(3): p. 272- 93.

62. Adamo, D.E. and B.J. Martin, Position sense asymmetry. Exp Brain Res, 2009. 192(1): p. 87-95.

63. Elias, L.J. and M.P. Bryden, Footedness is a better predictor of language lateralisation than handedness. Laterality, 1998. 3(1): p. 41-51.

64. Tran, U.S., S. Stieger, and M. Voracek, Evidence for general right-, mixed-, and left- sidedness in self-reported handedness, footedness, eyedness, and earedness, and a primacy of footedness in a large-sample latent variable analysis. Neuropsychologia, 2014. 62: p. 220-32.

65. Ribeiro, F. and J. Oliveira, Aging effects on joint proprioception: the role of physical activity in proprioception preservation. European Review of Aging and Physical Activity, 2007. 4(2): p. 71-76.

66. Campbell, M.J., A.J. McComas, and F. Petito, Physiological changes in ageing muscles. J Neurol Neurosurg Psychiatry, 1973. 36(2): p. 174-82.

67. Hunter, S.K., H.M. Pereira, and K.G. Keenan, The aging neuromuscular system and motor performance. J Appl Physiol (1985), 2016. 121(4): p. 982-995.

68. Hortobágyi, T. and P. DeVita, Altered movement strategy increases lower extremity stiffness during stepping down in the aged. J Gerontol A Biol Sci Med Sci, 1999. 54(2): p. B63-70.

69. Tirosh, O. and W.A. Sparrow, Age and walking speed effects on muscle recruitment in gait termination. Gait Posture, 2005. 21(3): p. 279-88.

70. Wu, T. and M. Hallett, The influence of normal human ageing on automatic movements. J Physiol, 2005. 562(Pt 2): p. 605-15.

71. Kokmen, E., R.W. Bossemeyer, and W.J. Williams, Quantitative evaluation of joint motion sensation in an aging population. J Gerontol, 1978. 33(1): p. 62-7.

72. Lovelace, E.A. and J.E. Aikens, Vision, kinesthesis, and control of hand movement by young and old adults. Percept Mot Skills, 1990. 70(3 Pt 2): p. 1131-7.

73. Adamo, D.E., B.J. Martin, and S.H. Brown, Age-related differences in upper limb proprioceptive acuity. Percept Mot Skills, 2007. 104(3 Pt 2): p. 1297-309.

74. Wright, M.L., D.E. Adamo, and S.H. Brown, Age-related declines in the detection of passive wrist movement. Neurosci Lett, 2011. 500(2): p. 108-12.

75. Relph, N. and L. Herrington, The effects of knee direction, physical activity and age on knee joint position sense. Knee, 2016. 23(3): p. 393-8.

76. Van Halewyck, F., et al., Factors underlying age-related changes in discrete aiming. Exp Brain Res, 2015. 233(6): p. 1733-44.

77. Stelmach, G.E., N.L. Goggin, and P.C. Amrhein, Aging and the restructuring of precued movements. Psychol Aging, 1988. 3(2): p. 151-7.

78. McNair, P.J. and P.J. Heine, Trunk proprioception: enhancement through lumbar bracing. Arch Phys Med Rehabil, 1999. 80(1): p. 96-9.

79. Chu, J.C., et al., The Effect of a Neoprene Shoulder Stabilizer on Active Joint- Reposition Sense in Subjects With Stable and Unstable Shoulders. J Athl Train, 2002. 37(2): p. 141-145.

80. Faul, F., et al., G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods, 2007. 39(2): p. 175-91.

81. Oldfield, R.C., The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 1971. 9(1): p. 97-113.

82. Spry, S., C. Zebas, and M. Visser, What is leg dominance? In: Hamill J, editor. 1993: Biomechanics in Sport XI. Proceedings of the XI Symposium of the International Society of Biomechanics in Sports. MA: Amherst.

83. Dieling, S., M. van der Esch, and T.W. Janssen, Knee joint proprioception in ballet dancers and non-dancers. J Dance Med Sci, 2014. 18(4): p. 143-8.

84. Schneider, C.A., W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat Methods, 2012. 9(7): p. 671-5.

85. Gomez-Perez, S.L., et al., Measuring Abdominal Circumference and Skeletal Muscle From a Single Cross-Sectional Computed Tomography Image: A Step-by-Step Guide for Clinicians Using National Institutes of Health ImageJ. JPEN J Parenter Enteral Nutr, 2016. 40(3): p. 308-18.

86. Bjorklund, M., et al., Position sense acuity is diminished following repetitive low- intensity work to fatigue in a simulated occupational setting. A critical comment. European Journal of Applied Physiology, 2003. 88(4-5): p. 485-486.

87. Angyan, L., C. Antal, and Z. Angyan, Reproduction of reaching movements to memorized targets in the lack of visual control. Acta Physiologica Hungarica, 2007. 94(3): p. 179-182.

88. Rossetti, Y., C. Meckler, and C. Prablanc, Is There an Optimal Arm Posture - Deterioration of Finger Localization Precision and Comfort Sensation in Extreme Arm-Joint Postures. Experimental Brain Research, 1994. 99(1): p. 131-136.

89. Vafadar, A.K., J.N. Cote, and P.S. Archambault, Sex differences in the shoulder joint position sense acuity: a cross-sectional study. Bmc Musculoskeletal Disorders, 2015. 16.

90. Negyesi, J., et al., Age-specific modifications in healthy adults' knee joint position sense. Somatosens Mot Res, 2019: p. 1-8.

91. Peat, J.K., B. Barton, and E.J. Elliott, Statistics workbook for evidence-based healthcare. 2008, Malden, Mass.: Blackwell. viii, 182 p.

92. Galamb, K., et al., Effects of side-dominance on knee joint proprioceptive target- matching asymmetries. Physiol Int, 2018. 105(3): p. 257-265.

93. Boisgontier, M.P. and V. Nougier, Ageing of internal models: from a continuous to an intermittent proprioceptive control of movement. Age (Dordr), 2013. 35(4): p. 1339- 55.

94. Latash, M.L., J.P. Scholz, and G. Schoner, Motor control strategies revealed in the structure of motor variability. Exerc Sport Sci Rev, 2002. 30(1): p. 26-31.

95. Mathiassen, S.E., T. Moller, and M. Forsman, Variability in mechanical exposure within and between individuals performing a highly constrained industrial work task. Ergonomics, 2003. 46(8): p. 800-24.

96. Stergiou, N., R. Harbourne, and J. Cavanaugh, Optimal movement variability: a new theoretical perspective for neurologic physical therapy. J Neurol Phys Ther, 2006. 30(3): p. 120-9.

97. Trenell, M.I., et al., Compression Garments and Recovery from Eccentric Exercise: A (31)P-MRS Study. J Sports Sci Med, 2006. 5(1): p. 106-14.

98. Ali, A., M.P. Caine, and B.G. Snow, Graduated compression stockings: physiological and perceptual responses during and after exercise. J Sports Sci, 2007. 25(4): p. 413- 9.

99. Doan, B.K., et al., Evaluation of a lower-body compression garment. J Sports Sci, 2003. 21(8): p. 601-10.

100. Kraemer, W.J., et al., Influence of compression garments on vertical jump performance in NCAA Division I volleyball players. Journal of strength and conditioning research, 1996. 10(3): p. 180-183.

101. Mizuno, S., et al., Wearing Compression Tights on the Thigh during Prolonged Running Attenuated Exercise-Induced Increase in Muscle Damage Marker in Blood. Front Physiol, 2017. 8: p. 834.

102. Binder, M.D., et al., The response of Golgi tendon organs to single motor unit contractions. J Physiol, 1977. 271(2): p. 337-49.

103. Madeleine, P., S.E. Mathiassen, and L. Arendt-Nielsen, Changes in the degree of motor variability associated with experimental and chronic neck-shoulder pain during a standardised repetitive arm movement. Exp Brain Res, 2008. 185(4): p. 689-98.

104. MacRae, B.A., J.D. Cotter, and R.M. Laing, Compression garments and exercise: garment considerations, physiology and performance. Sports Med, 2011. 41(10): p. 815-43.

105. Mothes, H., et al., Do placebo expectations influence perceived exertion during physical exercise? PLoS One, 2017. 12(6): p. e0180434.

106. Moyer, R.S. and T.K. Landauer, Time required for judgements of numerical inequality. Nature, 1967. 215(5109): p. 1519-20.

107. Marini, F., M. Ferrantino, and J. Zenzeri, Proprioceptive identification of joint position versus kinaesthetic movement reproduction. Hum Mov Sci, 2018. 62: p. 1-13.

108. Wiper, M.L., Evolutionary and mechanistic drivers of laterality: A review and new synthesis. Laterality, 2017. 22(6): p. 740-770.

109. Sagasti, A., Three ways to make two sides: Genetic models of asymmetric nervous system development. Neuron, 2007. 55(3): p. 345-351.

110. Dadda, M. and A. Bisazza, Prenatal light exposure affects development of behavioural lateralization in a livebearing fish. Behavioural Processes, 2012. 91(1): p. 115-118.

111. Biddle, F.G., et al., Genetic-Variation in Paw Preference (Handedness) in the Mouse. Genome, 1993. 36(5): p. 935-943.

112. Collins, R.L., E.E. Sargent, and P.E. Neumann, Genetic and Behavioral-Tests of the Mcmanus Hypothesis Relating Response to Selection for Lateralization of Handedness in Mice to Degree of Heterozygosity. Behavior Genetics, 1993. 23(4): p. 413-421.

113. Collins, R.L., On the inheritance of handedness. I. Laterality in inbred mice. J Hered, 1968. 59(1): p. 9-12.

114. Hopkins, W.D. and A.J. Bennett, Handedness and Approach-Avoidance Behavior in Chimpanzees (Pan). Journal of Experimental Psychology-Animal Behavior Processes, 1994. 20(4): p. 413-418.

115. Bisazza, A., L. Facchin, and G. Vallortigara, Heritability of lateralization in fish: concordance of right-left asymmetry between parents and offspring. Neuropsychologia, 2000. 38(7): p. 907-912.

116. Bisazza, A., et al., Artificial selection on laterality in the teleost fish Girardinus falcatus. Behavioural Brain Research, 2007. 178(1): p. 29-38.

117. Brown, C. and M. Magat, The evolution of lateralized foot use in parrots: a phylogenetic approach. Behavioral Ecology, 2011. 22(6): p. 1201-1208.

118. Bibost, A.L. and C. Brown, Laterality Influences Schooling Position in Rainbowfish, Melanotaenia spp. Plos One, 2013. 8(11).

119. Austin, N.P. and L.J. Rogers, Limb preferences and lateralization of aggression, reactivity and vigilance in feral horses, Equus caballus. Animal Behaviour, 2012. 83(1): p. 239-247.

120. Farmer, K., K. Krueger, and R.W. Byrne, Visual laterality in the domestic horse (Equus caballus) interacting with humans. Animal Cognition, 2010. 13(2): p. 229-238.

121. Michel, G.F., et al., Evolution and development of handedness: An Evo-Devo approach. Cerebral Lateralization and Cognition: Evolutionary and Developmental Investigations of Behavioral Biases, 2018. 238: p. 347-374.

122. Uomini, N.T. and L. Ruck, Manual laterality and cognition through evolution: An archeological perspective. Cerebral Lateralization and Cognition: Evolutionary and Developmental Investigations of Behavioral Biases, 2018. 238: p. 295-323.

123. Pujol, J., et al., Cerebral lateralization of language in normal left-handed people studied by functional MRI. Neurology, 1999. 52(5): p. 1038-43.

124. Van der Haegen, L. and M. Brysbaert, The relationship between behavioral language laterality, face laterality and language performance in left-handers. Plos One, 2018. 13(12).

125. Hall, L.A. and D.I. McCloskey, Detections of movements imposed on finger, elbow and shoulder joints. J Physiol, 1983. 335: p. 519-33.

126. Triggs, W.J., R. Calvanio, and M. Levine, Transcranial magnetic stimulation reveals a hemispheric asymmetry correlate of intermanual differences in motor performance. Neuropsychologia, 1997. 35(10): p. 1355-63.

127. Volkmann, J., et al., Handedness and asymmetry of hand representation in human motor cortex. J Neurophysiol, 1998. 79(4): p. 2149-54.

128. Legon, W., et al., Non-dominant hand movement facilitates the frontal N30 somatosensory evoked potential. BMC Neurosci, 2010. 11: p. 112.

129. Jung, P., et al., Asymmetry in the human primary somatosensory cortex and handedness. Neuroimage, 2003. 19(3): p. 913-23.

130. Sörös, P., et al., Cortical asymmetries of the human somatosensory hand representation in right- and left-handers. Neurosci Lett, 1999. 271(2): p. 89-92.

131. Tecchio, F., et al., Spatial properties and interhemispheric differences of the sensory hand cortical representation: a neuromagnetic study. Brain Res, 1997. 767(1): p. 100- 8.

132. Sainburg, R.L., Convergent models of handedness and brain lateralization. Front Psychol, 2014. 5: p. 1092.

133. Hatta, T., Handedness and the brain: a review of brain-imaging techniques. Magn Reson Med Sci, 2007. 6(2): p. 99-112.

134. Meador, K.J., et al., Physiology of somatosensory perception: cerebral lateralization and extinction. Neurology, 1998. 51(3): p. 721-7.

135. Goble, D.J., et al., The neural basis of central proprioceptive processing in older versus younger adults: an important sensory role for right putamen. Hum Brain Mapp, 2012. 33(4): p. 895-908.

136. Wright, M.L., D.E. Adamo, and S.H. Brown, Age-related declines in the detection of passive wrist movement. Neuroscience Letters, 2011. 500(2): p. 108-112.

137. Goble, D.J., et al., Proprioceptive sensibility in the elderly: Degeneration, functional consequences and plastic-adaptive processes. Neuroscience and Biobehavioral Reviews, 2009. 33(3): p. 271-278.

138. Fling, B.W., et al., Age differences in interhemispheric interactions: callosal structure, physiological function, and behavior. Frontiers in Neuroscience, 2011. 5.

139. Talelli, P., et al., The effect of age on task-related modulation of interhemispheric balance. Experimental Brain Research, 2008. 186(1): p. 59-66.

140. Cabeza, R., Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 2002. 17(1): p. 85-100.

141. Park, D.C. and P. Reuter-Lorenz, The Adaptive Brain: Aging and Neurocognitive Scaffolding. Annual Review of Psychology, 2009. 60: p. 173-196.

142. Cabeza, R., et al., Aging gracefully: Compensatory brain activity in high-performing older adults. Neuroimage, 2002. 17(3): p. 1394-1402.

143. Grady, C.L., Cognitive neuroscience of aging. Year in Cognitive Neuroscience 2008, 2008. 1124: p. 127-144.

144. Reuter-Lorenz, P.A., et al., Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. Journal of Cognitive Neuroscience, 2000. 12(1): p. 174-187.

145. Li, S.C. and U. Lindenberger, Cross-level unification: A computational exploration of the link between deterioration of neurotransmitter systems and dedifferentiation of cognitive abilities in old age. Cognitive Neuroscience of Memory, 1999: p. 103-146.

146. Baltes, P.B. and U. Lindenberger, Emergence of a powerful connection between sensory and cognitive functions across the adult life span: A new window to the study of cognitive aging? Psychology and Aging, 1997. 12(1): p. 12-21.

147. Springer, J.A., et al., Language dominance in neurologically normal and epilepsy subjects - A functional MRI study. Brain, 1999. 122: p. 2033-2045.

148. Szaflarski, J.P., et al., Language lateralization in left-handed and ambidextrous people: fMRI data. Neurology, 2001. 56(8): p. A247-A247.

149. Goble, D.J., et al., Proprioceptive sensibility in the elderly: degeneration, functional consequences and plastic-adaptive processes. Neurosci Biobehav Rev, 2009. 33(3): p. 271-8.

150. Pickard, C.M., et al., Is there a difference in hip joint position sense between young and older groups? Journals of Gerontology Series a-Biological Sciences and Medical Sciences, 2003. 58(7): p. 631-635.

151. Boisgontier, M.P., et al., Presbypropria: the effects of physiological ageing on proprioceptive control. Age (Dordr), 2012. 34(5): p. 1179-94.

152. Ashton-Miller, J.A., Proprioceptive thresholds at the ankle: Implications for the prevention of ligament injury. Proprioception and Neuromuscular Control in Joint Stability, 2000: p. 279-289.

153. Herter, T.M., S.H. Scott, and S.P. Dukelow, Systematic changes in position sense accompany normal aging across adulthood. J Neuroeng Rehabil, 2014. 11: p. 43.

154. Domingo, A. and T. Lam, Reliability and validity of using the Lokomat to assess lower limb joint position sense in people with incomplete spinal cord injury. J Neuroeng Rehabil, 2014. 11: p. 167.

155. Qaiser, T., A.E. Chisholm, and T. Lam, The relationship between lower limb proprioceptive sense and locomotor skill acquisition. Exp Brain Res, 2016. 234(11): p. 3185-3192.

156. Hasan, Z., Role of proprioceptors in neural control. Curr Opin Neurobiol, 1992. 2(6): p. 824-9.

157. Symes, M., G. Waddington, and R. Adams, Depth of ankle inversion and discrimination of foot positions. Percept Mot Skills, 2010. 111(2): p. 475-84.

158. Berghuis, K.M.M., et al., Age-related changes in brain deactivation but not in activation after motor learning. Neuroimage, 2019. 186: p. 358-368.

159. Piitulainen, H., et al., Cortical Proprioceptive Processing Is Altered by Aging. Front Aging Neurosci, 2018. 10: p. 147.

160. Nurse, M.A. and B.M. Nigg, Quantifying a relationship between tactile and vibration sensitivity of the human foot with plantar pressure distributions during gait. Clin Biomech (Bristol, Avon), 1999. 14(9): p. 667-72.

161. Courtine, G., et al., Continuous, bilateral Achilles' tendon vibration is not detrimental to human walk. Brain Res Bull, 2001. 55(1): p. 107-15.

162. Lin, S.I., Motor function and joint position sense in relation to gait performance in chronic stroke patients. Arch Phys Med Rehabil, 2005. 86(2): p. 197-203.

163. Okuda, T., et al., Knee joint position sense in compressive myelopathy. Spine (Phila Pa 1976), 2006. 31(4): p. 459-62.

164. Soyuer, F. and A. Ozturk, The effect of spasticity, sense and walking aids in falls of people after chronic stroke. Disabil Rehabil, 2007. 29(9): p. 679-87.

165. Kiran, D., et al., Correlation of three different knee joint position sense measures. Phys Ther Sport, 2010. 11(3): p. 81-5.

166. Collins, D.F., et al., Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee. Journal of Neurophysiology, 2005. 94(3): p. 1699-1706.

167. Zhang, L.Y., et al., Position of compression garment around the knee affects healthy adults’ knee joint position sense acuity. Human Movement Science, 2019. 67: p. 102519.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る