リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Good Wild Harmonic Bundles and Good Filtered Higgs Bundles」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Good Wild Harmonic Bundles and Good Filtered Higgs Bundles

Mochizuki, Takuro 京都大学 DOI:10.3842/sigma.2021.068

2021.07.17

概要

We prove the Kobayashi-Hitchin correspondence between good wild harmonic bundles and polystable good filtered λ-flat bundles satisfying a vanishing condition. We also study the correspondence for good wild harmonic bundles with the homogeneity with respect to a group action, which is expected to provide another way to construct Frobenius manifolds.

この論文で使われている画像

参考文献

[1] Barannikov S., Quantum periods. I. Semi-infinite variations of Hodge structures, Int. Math. Res. Not. 2001

(2001), 1243–1264, arXiv:math.AG/0006193.

[2] Biquard O., Fibr´es de Higgs et connexions int´egrables: le cas logarithmique (diviseur lisse), Ann. Sci. Ecole

Norm. Sup. (4) 30 (1997), 41–96.

[3] Biquard O., Boalch P., Wild non-abelian Hodge theory on curves, Compos. Math. 140 (2004), 179–204,

arXiv:math.DG/0111098.

[4] Bogomolov F.A., Holomorphic tensors and vector bundles on projective manifolds, Math. USSR Izv. 13

(1979), 499–555.

[5] Borne N., Fibr´es paraboliques et champ des racines, Int. Math. Res. Not. 2007 (2007), rnm049, 38 pages,

arXiv:math.AG/0604458.

[6] Borne N., Sur les repr´esentations du groupe fondamental d’une vari´et´e priv´ee d’un diviseur a

` croisements

normaux simples, Indiana Univ. Math. J. 58 (2009), 137–180, arXiv:0704.1236.

[7] Cecotti S., Vafa C., Topological–anti-topological fusion, Nuclear Phys. B 367 (1991), 359–461.

[8] Cecotti S., Vafa C., On classification of N = 2 supersymmetric theories, Comm. Math. Phys. 158 (1993),

569–644, arXiv:hep-th/9211097.

[9] Coates T., Iritani H., Tseng H.H., Wall-crossings in toric Gromov–Witten theory. I. Crepant examples,

Geom. Topol. 13 (2009), 2675–2744, arXiv:math.AG/0611550.

[10] Collier B., Wentworth R., Conformal limits and the Bialynicki-Birula stratification of the space of λconnections, Adv. Math. 350 (2019), 1193–1225, arXiv:1808.01622.

[11] Corlette K., Flat G-bundles with canonical metrics, J. Differential Geom. 28 (1988), 361–382.

[12] Cornalba M., Griffiths P., Analytic cycles and vector bundles on non-compact algebraic varieties, Invent.

Math. 28 (1975), 1–106.

[13] Donagi R., Pantev T., Geometric Langlands and non-abelian Hodge theory, in Geometry, Analysis, and

Algebraic Geometry: Forty Years of the Journal of Differential Geometry, Surv. Differ. Geom., Vol. 13, Int.

Press, Somerville, MA, 2009, 85–116.

[14] Donaldson S.K., A new proof of a theorem of Narasimhan and Seshadri, J. Differential Geom. 18 (1983),

269–277.

[15] Donaldson S.K., Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector

bundles, Proc. London Math. Soc. 50 (1985), 1–26.

[16] Donaldson S.K., Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987), 231–247.

[17] Donaldson S.K., Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. 55 (1987),

127–131.

[18] Dubrovin B., Geometry and integrability of topological-antitopological fusion, Comm. Math. Phys. 152

(1993), 539–564, arXiv:hep-th/9206037.

[19] Gieseker D., On a theorem of Bogomolov on Chern classes of stable bundles, Amer. J. Math. 101 (1979),

77–85.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Good Wild Harmonic Bundles and Good Filtered Higgs Bundles

65

[20] Grothendieck A., Techniques de construction et th´eor`emes d’existence en g´eom´etrie alg´ebrique. IV. Les

sch´emas de Hilbert, in S´eminaire Bourbaki, Vol. 6, Soc. Math. France, Paris, 1961, Exp. No. 221, 28 pages.

[21] Hertling C., tt∗ geometry, Frobenius manifolds, their connections, and the construction for singularities,

J. Reine Angew. Math. 555 (2003), 77–161, arXiv:math.AG/0203054.

[22] Hertling C., Sevenheck C., Nilpotent orbits of a generalization of Hodge structures, J. Reine Angew. Math.

609 (2007), 23–80, arXiv:math.AG/0603564.

[23] Hertling C., Sevenheck C., Limits of families of Brieskorn lattices and compactified classifying spaces, Adv.

Math. 223 (2010), 1155–1224, arXiv:0805.4777.

[24] Hitchin N., The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987), 59–126.

[25] Hitchin N., A note on vanishing theorems, in Geometry and Analysis on Manifolds, Progr. Math., Vol. 308,

Birkh¨

auser/Springer, Cham, 2015, 373–382.

[26] Hu Z., Huang P., Simpson–Mochizuki correspondence for λ-flat bundles, arXiv:1905.10765.

[27] Huang P., Non-Abelian Hodge theory and related topics, SIGMA 16 (2020), 029, 34 pages, arXiv:1908.08348.

[28] Iritani H., tt∗ -geometry in quantum cohomology, arXiv:0906.1307.

[29] Iyer J.N.N., Simpson C.T., A relation between the parabolic Chern characters of the de Rham bundles,

Math. Ann. 338 (2007), 347–383, arXiv:math.AG/0603677.

[30] Jost J., Zuo K., Harmonic maps of infinite energy and rigidity results for representations of fundamental

groups of quasiprojective varieties, J. Differential Geom. 47 (1997), 469–503.

[31] Kashiwara M., Semisimple holonomic D-modules, in Topological Field Theory, Primitive Forms and Related

Topics (Kyoto, 1996), Progr. Math., Vol. 160, Birkh¨

auser Boston, Boston, MA, 1998, 267–271.

[32] Kobayashi S., First Chern class and holomorphic tensor fields, Nagoya Math. J. 77 (1980), 5–11.

[33] Kobayashi S., Curvature and stability of vector bundles, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982),

158–162.

[34] Kobayashi S., Differential geometry of holomorphic vector bundles, Seminary Note in the University of

Tokyo, Vol. 41, University of Tokyo, Japan, 1982.

[35] Kobayashi S., Differential geometry of complex vector bundles, Publications of the Mathematical Society of

Japan, Vol. 15, Princeton University Press, Princeton, NJ, 1987.

[36] Kotake T., Ochiai T. (Editors), Non-linear problems in geometry, Proceedings of the Sixth International

Taniguchi Symposium, The Taniguchi Foundation, Tohoku University, Japan, 1979.

[37] Li J., Hermitian–Einstein metrics and Chern number inequalities on parabolic stable bundles over K¨

ahler

manifolds, Comm. Anal. Geom. 8 (2000), 445–475.

[38] Li J., Narasimhan M.S., Hermitian–Einstein metrics on parabolic stable bundles, Acta Math. Sin. (Engl.

Ser.) 15 (1999), 93–114.

[39] L¨

ubke M., Chernklassen von Hermite–Einstein–Vektorb¨

undeln, Math. Ann. 260 (1982), 133–141.

[40] L¨

ubke M., Stability of Einstein–Hermitian vector bundles, Manuscripta Math. 42 (1983), 245–257.

[41] L¨

ubke M., Teleman A., The universal Kobayashi–Hitchin correspondence on Hermitian manifolds, Mem.

Amer. Math. Soc. 183 (2006), vi+97 pages, arXiv:math.DG/0402341.

[42] Maruyama M., Yokogawa K., Moduli of parabolic stable sheaves, Math. Ann. 293 (1992), 77–99.

[43] Mehta V.B., Ramanathan A., Semistable sheaves on projective varieties and their restriction to curves,

Math. Ann. 258 (1982), 213–224.

[44] Mehta V.B., Ramanathan A., Restriction of stable sheaves and representations of the fundamental group,

Invent. Math. 77 (1984), 163–172.

[45] Mehta V.B., Seshadri C.S., Moduli of vector bundles on curves with parabolic structures, Math. Ann. 248

(1980), 205–239.

[46] Mochizuki T., Kobayashi–Hitchin correspondence for tame harmonic bundles and an application, Ast´erisque

309 (2006), viii+117 pages.

[47] Mochizuki T., Asymptotic behaviour of tame harmonic bundles and an application to pure twistor Dmodules. I, Mem. Amer. Math. Soc. 185 (2007), xii+324 pages.

[48] Mochizuki T., Asymptotic behaviour of tame harmonic bundles and an application to pure twistor Dmodules. II, Mem. Amer. Math. Soc. 185 (2007), xii+565 pages.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

66

T. Mochizuki

[49] Mochizuki T., Kobayashi–Hitchin correspondence for tame harmonic bundles. II, Geom. Topol. 13 (2009),

359–455, arXiv:math.DG/0602266.

[50] Mochizuki T., Asymptotic behavior of variation of pure polarized TERP structure, Publ. Res. Inst. Math.

Sci. 47 (2011), 419–534, arXiv:0811.1384.

[51] Mochizuki T., Wild harmonic bundles and wild pure twistor D-modules, Ast´erisque 340 (2011), x+607.

[52] Mochizuki T., Harmonic bundles and Toda lattices with opposite sign I, RIMS Kˆ

okyˆ

uroku Bessatsu, to

appear, arXiv:1301.1718.

[53] Mochizuki T., Harmonic bundles and Toda lattices with opposite sign II, Comm. Math. Phys. 328 (2014),

1159–1198, arXiv:1301.1718.

[54] Mochizuki T., Wild harmonic bundles and twistor D-modules, in Proceedings of the International Congress

of Mathematicians – Seoul 2014, Vol. 1, Kyung Moon Sa, Seoul, 2014, 499–527.

[55] Mochizuki T., Mixed twistor D-modules, Lecture Notes in Math., Vol. 2125, Springer, Cham, 2015.

[56] Mumford D., Projective invariants of projective structures and applications, in Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, 526–530.

[57] Mumford D., Lectures on curves on an algebraic surface, Annals of Mathematics Studies, Vol. 59, Princeton

University Press, Princeton, N.J., 1966.

[58] Narasimhan M.S., Seshadri C.S., Stable and unitary vector bundles on a compact Riemann surface, Ann.

of Math. 82 (1965), 540–567.

[59] Sabbah C., Harmonic metrics and connections with irregular singularities, Ann. Inst. Fourier (Grenoble)

49 (1999), 1265–1291, arXiv:math.AG/9905039.

[60] Sabbah C., Polarizable twistor D-modules, Ast´erisque 300 (2005), vi+208 pages, arXiv:math.AG/0503038.

[61] Saito K., Takahashi A., From primitive forms to Frobenius manifolds, in From Hodge Theory to Integrability

and TQFT tt∗ -Geometry, Proc. Sympos. Pure Math., Vol. 78, Amer. Math. Soc., Providence, RI, 2008, 31–

48.

[62] Simpson C.T., Constructing variations of Hodge structure using Yang–Mills theory and applications to

uniformization, J. Amer. Math. Soc. 1 (1988), 867–918.

[63] Simpson C.T., Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990), 713–770.

[64] Simpson C.T., Higgs bundles and local systems, Inst. Hautes Etudes

Sci. Publ. Math. 75 (1992), 5–95.

[65] Simpson C.T., The Hodge filtration on nonabelian cohomology, in Algebraic Geometry – Santa Cruz

1995, Proc. Sympos. Pure Math., Vol. 62, Amer. Math. Soc., Providence, RI, 1997, 217–281, arXiv:alggeom/9604005.

[66] Simpson C.T., Mixed twistor structures, arXiv:alg-geom/9705006.

[67] Simpson C.T., Iterated destabilizing modifications for vector bundles with connection, in Vector Bundles

and Complex Geometry, Contemp. Math., Vol. 522, Amer. Math. Soc., Providence, RI, 2010, 183–206,

arXiv:0812.3472.

[68] Siu Y.T., Techniques of extension of analytic objects, Lecture Notes in Pure and Applied Mathematics,

Vol. 8, Marcel Dekker, Inc., New York, 1974.

[69] Siu Y.T., The complex-analyticity of harmonic maps and the strong rigidity of compact K¨

ahler manifolds,

Ann. of Math. 112 (1980), 73–111.

[70] Steer B., Wren A., The Donaldson–Hitchin–Kobayashi correspondence for parabolic bundles over orbifold

surfaces, Canad. J. Math. 53 (2001), 1309–1339.

[71] Takemoto F., Stable vector bundles on algebraic surfaces, Nagoya Math. J. 47 (1972), 29–48.

[72] Takemoto F., Stable vector bundles on algebraic surfaces. II, Nagoya Math. J. 52 (1973), 173–195.

[73] Uhlenbeck K., Yau S.-T., On the existence of Hermitian–Yang–Mills connections in stable vector bundles,

Comm. Pure Appl. Math. 39 (1986), S257–S293.

[74] Uhlenbeck K.K., Connections with Lp bounds on curvature, Comm. Math. Phys. 83 (1982), 31–42.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る