リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Electronic properties of perovskite strontium chromium oxyfluoride epitaxial thin films fabricated via low-temperature topotactic reaction」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Electronic properties of perovskite strontium chromium oxyfluoride epitaxial thin films fabricated via low-temperature topotactic reaction

Akira Chikamatsu Takahiro Maruyama Tsukasa Katayama Yu Su Yoshihiro Tsujimoto Kazunari Yamaura Miho Kitamura Koji Horiba Hiroshi Kumigashira Tetsuya Hasegawa 東北大学 DOI:10.1103/PhysRevMaterials.4.025004

2020.02.18

概要

Perovskite chromium oxyfluoride SrCrO2.6F0.4 epitaxial thin films were fabricated via low-temperature topotactic fluorination of SrCrO2.8 precursor with polyvinylidene fluoride as a fluorine source. The obtained SrCrO2.6F0.4 thin film had a different chemical composition than that of bulk polycrystalline SrCrO2.8F0.2, possibly due to the higher reactivity of such thin film. Both the precursor and fluorinated thin films containing Cr3.6+ exhibited insulating behavior with band gaps of ∼0.6 eV, in contrast to metallic SrCrO3 with Cr4+ at 300 K. The experimentally observed valence and conduction bands of the SrCrO2.8, SrCrO3, and SrCrO2.6F0.4 thin films suggested that the spectral weight transfer from the coherent part to the incoherent part with the reduction of Cr valences was caused by strong electron correlation effects. This study offers a fundamental un- derstanding of the fluorine doping effects on a crystalline structure and the correlated electronic performance of chromium oxides.

この論文で使われている画像

参考文献

[1] A. C. Komarek, S. V. Streltsov, M. Isobe, T. Möller, M. Hoelzel, A. Senyshyn, D. Trots, M. T. Fernández-Díaz, T. Hansen, H. Gotou, T. Yagi, Y. Ueda, V. I. Anisimov, M. Grüninger, D. I. Khomskii, and M. Braden, Phys. Rev. Lett. 101, 167204 (2008).

[2] K. H. L. Zhang, Y. Du, P. V. Sushko, M. E. Bowden, V. Shutthanandan, L. Qiao, G. X. Cao, Z. Gai, S. Sallis, L. F. J. Piper, and S. A. Chambers, J. Phys.: Condens. Matter 27, 245605 (2015).

[3] Z. H. Zhu, F. J. Rueckert, J. I. Budnick, W. A. Hines, M. Jain, H. Zhang, and B. O. Wells, Phys. Rev.B 87, 195129 (2013).

[4] K. Maiti and D. D. Sarma, Phys. Rev.B 54, 7816 (1996).

[5] K. H. L. Zhang, Y. Du, P. V. Sushko, M. E. Bowden, V. Shutthanandan, S. Sallis, L. F. J. Piper, and S. A. Chambers, Phys. Rev. B 91, 155129 (2015).

[6] K. H. L. Zhang, Y. Du, A. Papadogianni, O. Bierwagen, S. Sallis, L. F. J. Piper, M. E. Bowden, V. Shutthanandan, P. V. Sushko, and S. A. Chambers, Adv. Mater. 27, 5191 (2015).

[7] K. H. L. Zhang, P. V. Sushko, R. Colby, Y. Du, M. E. Bowden, and S. A. Chambers, Nat. Commun. 5, 4669 (2014).

[8] A. M. Arévalo-López, J. A. Rodgers, M. S. Senn, F. Sher, J. Farnham, W. Gibbs, and J. P. Attfield, Angew. Chem. Int. Ed. 51, 10791 (2012).

[9] C. Tassel, Y. Goto, Y. Kuno, J. Hester, M. Green, Y. Kobayashi, and H. Kageyama, Angew. Chem. Int. Ed. 53, 10377 (2014).

[10] R. Zhang, G. Read, F. Lang, T. Lancaster, S. J. Blundell, and M. A. Hayward, Inorg. Chem. 55, 3169 (2016).

[11] Y. Su, Y. Tsujimoto, K. Fujii, Y. Masubuchi, H. Ohata, H. Iwai, M. Yashima, and K. Yamaura, Chem. Commun. 55, 7239 (2019).

[12] L. O.-S.-Martin, A. J. Williams, J. Rodgers, J. P. Attfield, G. Heymann, and H. Huppertz, Phys. Rev. Lett. 99, 255701 (2007).

[13] T. Katayama, A. Chikamatsu, Y. Hirose, R. Takagi, H. Kamisaka, T. Fukumura, and T. Hasegawa, J. Mater. Chem. C 2, 5350 (2014).

[14] P. A. Sukkurji, A. Molinari, C. Reitz, R. Witte, C. Kübel, V. S. K. Chakravadhanula, R. Kruk, and O. Clemens, Materials 11, 1204 (2018).

[15] J. Wang, Y. Shin, E. Arenholz, B. M. Lefler, J. M. Rondinelli, and S. J. May, Phys. Rev. Mater. 2, 073407 (2018).

[16] T. Katayama, A. Chikamatsu, Y. Hirose, T. Fukumura, and T. Hasegawa, J. Sol-Gel Sci. Technol. 73, 527 (2015).

[17] E. J. Moon, Y. Xie, E. D. Laird, D. J. Keavney, C. Y. Li, and S. J. May, J. Am. Chem. Soc. 136, 2224 (2014).

[18] T. Onozuka, A. Chikamatsu, T. Katayama, Y. Hirose, I. Harayama, D. Sekiba, E. Ikenaga, M. Minohara, H. Kumigashira, and T. Hasegawa, ACS Appl. Mater. Interfaces 9, 10882 (2017).

[19] A. Chikamatsu, K. Kawahara, T. Shiina, T. Onozuka, T. Katayama, and T. Hasegawa, ACS Omega 3, 13141 (2018).

[20] K. Kawahara, A. Chikamatsu, T. Katayama, T. Onozuka, D. Ogawa, K. Morikawa, E. Ikenaga, Y. Hirose, I. Harayama, D. Sekiba, T. Fukumura, and T. Hasegawa, CrystEngComm 19, 313 (2017).

[21] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevMaterials.4.025004 for 2θ − θ XRD patterns at χ = 90◦, ϕ scan around the (103) reflection, 2.5-keV EDS results, AFM images, Cr L-edge XAS linear spectra, and UV-VIS-IR transmittance and reflectivity spectra.

[22] H.-J. Noh, J.-S. Kang, S. S. Lee, G. Kim, S.-W. Han, S.-J. Oh, J.-Y. Kim, H.-G. Lee, S. Yeo, S. Guha, and S.-W. Cheong, Europhys. Lett. 78, 27004 (2007).

[23] M. Takizawa, M. Minohara, H. Kumigashira, D. Toyota, M. Oshima, H. Wadati, T. Yoshida, A. Fujimori, M. Lippmaa, M. Kawasaki, H. Koinuma, G. Sordi, and M. Rozenberg, Phys. Rev. B 80, 235104 (2009).

[24] A. Chikamatsu, H. Wadati, H. Kumigashira, M. Oshima, A. Fujimori, M. Lippmaa, K. Ono, M. Kawasaki, and H. Koinuma, Phys. Rev. B 76, 201103(R) (2007).

[25] M. Takizawa, D. Toyota, H. Wadati, A. Chikamatsu, H. Kumigashira, A. Fujimori, M. Oshima, Z. Fang, M. Lippmaa, M. Kawasaki, and H. Koinuma, Phys. Rev. B 72, 060404(R) (2005).

[26] C. B. Stagarescu, X. Su, D. E. Eastman, K. N. Altmann, F. J. Himpsel, and A. Gupta, Phys. Rev.B 61, R9233 (2000).

[27] M. Schmidt, T. R. Cummins, M. Bürk, D. H. Lu, N. Nücker, S. Schuppler, and F. Lichtenberg, Phys. Rev. B 53, R14761 (1996).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る