リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「硬骨魚類における補体成分C4アイソタイプの機能的多様性」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

硬骨魚類における補体成分C4アイソタイプの機能的多様性

ネーラー ビンティ ロスリ BT ROSLI NEHLAH 九州大学

2023.04.30

概要

九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Functional Diversity of Complement C4 Isotypes
in Bony Fish Complement
ネーラー ビンティ ロスリ

https://hdl.handle.net/2324/6796073
出版情報:Kyushu University, 2023, 博士(農学), 課程博士
バージョン:
権利関係:

Name

:ネーラー

Title

:Functional Diversity of Complement C4 Isotypes in Bony Fish Complement
(硬骨魚類における補体成分 C4 アイソタイプの機能的多様性)

ビンティ

ロスリ (NEHLAH BT ROSLI)

Category:Kou

Thesis Summary
The complement is a major humoral system of innate immunity. The complement system consists of a
group of proteins in the body fluid and membrane proteins. These proteins help the immune system fight off
invading pathogens, such as viruses and bacteria, and other foreign substances. There are three activation
pathways of complement: the classical pathway, the alternative pathway, and the lectin pathway. In the
classical and lectin pathways of mammalian complement, complement component C4 plays an important
role by tagging the target.
The complement C4 is a member of the thioester-containing protein family. The thioester site plays a
crucial role endowing C4 with an ability of covalent binding to the target. This binding reaction is catalyzed
by a histidine (H) residue, which is located at about 100 residues C-terminal from the thioester site, to
accelerate its binding to hydroxy-group rich in carbohydrates of microbial targets. In several fish species, an
additional C4 isotype, in which the catalytic H is replaced by an aspartic acid (D), has been reported to show
binding specificity towards amino-group, relatively rich in proteins. The catalytic site difference has been
inferred to impacts its pathogen-binding specificity, affecting the tagging function of C4. However, the
functional differentiation of the C4-1, the atypical isotypes, has been still to be clarified with experimental
evidence. Thus, evolutionary implication of the divergence of two isotypic lineages, H-type (C4-1) and
D-type (C4-2), remains unclear.
In the present study, antibodies to detect the C4-1 and C4-2 isotypes of a model animal, common carp
(Cyprinus carpio) were established using recombinant domains of carp C4-1 and C4-2 and also using
synthetic peptides representing the two isotypes.
Using the established specific antibodies, the involvement of common carp C4-1 isotype in the classical
and lectin pathways was investigated using purified components responsible for proteolytic activation of C4
in the two pathways. The western blotting results showed that carp C4-1 isotype was cleaved into its active
fragment C4-1B by both C1s and MASP, serine proteases in the classical and lectin pathways, respectively.
The results suggest that the C4-1 isotype participates in both the classical and the lectin pathways of
complement activation.
Binding specificities of C4-1 and C4-2 to model targets and natural microbial targets were analyzed by
immunoassays using anti-C4-1 and anti-C4-2. In contrast to the specificity of the thioester site-mediated
covalent binding, predicted from the catalytic site difference, C4-1 and C4-2 showed similar binding spectra
against. The results suggest that the thioester-catalytic site is not a primary determinant of the binding of C4
isotypes to natural target and that both C4-1 and C4-2 equally participate in the complement activation in
bony fish.

この論文で使われている画像

参考文献

Adámek, Z., Mössmer, M., & Hauber, M. (2019). Current principles and

issues

affecting

organic

carp

(Cyprinus

carpio)

pond

farming. Aquaculture, 512, 734261.

Almitairi, J. O., Venkatraman Girija, U., Furze, C. M., Simpson-Gray, X.,

Badakshi, F., Marshall, J. E., Schwaeble, W. J., Mitchell, D. A., Moody,

P. C., & Wallis, R. (2018). Structure of the C1r–C1s interaction of the

C1 complex of complement activation. Proceedings of the National

Academy of Sciences, 115(4), 768-773.

Arlaud, G. J., Gaboriaud, C., Thielens, N. M., Budayova-Spano, M., Rossi, V.,

& Fontecilla-Camps, J. C. (2002). Structural biology of the C1 complex

of complement unveils the mechanisms of its activation and

proteolytic activity. Molecular immunology, 39(7-8), 383-394.

Bavia, L., Santiesteban-Lores, L. E., Carneiro, M. C., & Prodocimo, M. M.

(2022). Advances in the complement system of a teleost fish,

Oreochromis niloticus. Fish & Shellfish Immunology.

Bányai, L., & Patthy, L. (1999). The NTR module: domains of netrins,

secreted frizzled related proteins, and type I procollagen C-proteinase

enhancer protein are homologous with tissue inhibitors of

metalloproteases. Protein science, 8(8), 1636-1642.

Bekhouche, M., Kronenberg, D., Vadon-Le Goff, S., Bijakowski, C., Lim, N.

H., Font, B., Kessler, E., Colige, A., Nagase, H., Murphy, G., Hulmes,

D. J. S., & Moali, C. (2010). Role of the netrin-like domain of

procollagen

C-proteinase

enhancer-1

in

the

control

of

metalloproteinase activity. Journal of Biological Chemistry, 285(21),

15950-15959.

Belcher, J. D., Nguyen, J., Chen, C., Abdulla, F., Conglin, R., Ivy, Z. K.,

Cummings, J., Dudler, T., & Vercellotti, G. M. (2022). MASP-2 and

MASP-3 inhibitors block complement activation, inflammation, and

microvascular stasis in a murine model of vaso-occlusion in sickle cell

disease. Translational Research.

Blanchong, C. A., Chung, E. K., Rupert, K. L., Yang, Y., Yang, Z., Zhou, B.,

Moulds, J. M., & Yu, C. Y. (2001). Genetic, structural and functional

diversities of human complement components C4A and C4B and their

mouse

homologues,

Slp

and

C4. International

immunopharmacology, 1(3), 365-392.

Boackle, S. A. (2019). The Role of Complement in SLE. In Dubois' Lupus

Erythematosus and Related Syndromes (pp. 224-236).

87

Booth, W. T., Schlachter, C. R., Pote, S., Ussin, N., Mank, N. J., Klapper, V.,

Offermann, L. R., Tang, C., Hurlburt, B. K., & Chruszcz, M. (2018).

Impact of an N-terminal polyhistidine tag on protein thermal

stability. ACS omega, 3(1), 760-768.

Boshra, H., Gelman, A. E., & Sunyer, J. O. (2004). Structural and functional

characterization of complement C4 and C1s-like molecules in teleost

fish: insights into the evolution of classical and alternative

pathways. The Journal of Immunology, 173(1), 349-359.

Boshra, H., Li, J., & Sunyer, J. O. (2006). Recent advances on the complement

system of teleost fish. Fish & shellfish immunology, 20(2), 239-262.

Bottermann, M., Foss, S., Caddy, S. L., Clift, D., van Tienen, L. M., Vaysburd,

M., Cruickshank, J., O’Connell, K., Clark, J., Mayes, K., Higginson, K.,

Lode, H. E., McAdam, M. B., Sandlie, I., Andersen, J. T., & James, L. C.

(2019). Complement C4 prevents viral infection through capsid

inactivation. Cell host & microbe, 25(4), 617-629.

Boylan, N. J., Kim, A. J., Suk, J. S., Adstamongkonkul, P., Simons, B. W., Lai,

S. K., Cooper, M. J., & Hanes, J. (2012). Enhancement of airway gene

transfer by DNA nanoparticles using a pH-responsive block

copolymer

of

polyethylene

glycol

and

poly-Llysine. Biomaterials, 33(7), 2361-2371.

Bramham, J., Rance, M., Thai, C. T., Uhrín, D., Assa-Munt, N., Ogata, R. T., &

Barlow, P. N. (2004). 1H, 15N and 13C resonance assignments of the

C345C domain of the complement component C5. Journal of

Biomolecular NMR, 29(2), 217.

Brown, T. A. (2020). Gene cloning and DNA analysis: an introduction. John

Wiley & Sons.

Budayova-Spano, M., Grabarse, W., Thielens, N. M., Hillen, H., Lacroix, M.,

Schmidt, M., Fontecilla-Camps, J. C., Arlaud, G. J., & Gaboriaud, C.

(2002). Monomeric structures of the zymogen and active catalytic

domain of complement protease c1r: further insights into the c1

activation mechanism. Structure, 10(11), 1509-1519.

Cai, J. N., Yan, X., & Leung, P. S. (2022). Benchmarking species diversification in

global aquaculture (Vol. 605). Food & Agriculture Org..

Cai, J., Zhou, X., Yan, X., Lucente, D., & Lagana, C. (2019). Top 10 species

groups in global aquaculture 2017. Food and Agriculture Organization of

the United Nations, FAO Fisheries and Aquaculture Department. Available

online: http://www. fao. org/3/ca5 224en/CA5224EN. pdf (accessed on 30

January 2020).

88

Cantrell, S. A. (2003). Vectors for the Expression of Recombinant Proteins in

E. coli. In E. coli Plasmid Vectors (pp. 257-275). Humana Press.

Chen, K., Magri, G., Grasset, E. K., & Cerutti, A. (2020). Rethinking mucosal

antibody responses: IgM, IgG and IgD join IgA. Nature Reviews

Immunology, 20(7), 427-441.

Crowe, J., Masone, B. S., & Ribbe, J. (1995). One-step purification of

recombinant proteins with the 6xHis tag and Ni-NTA resin. Molecular

biotechnology, 4(3), 247-258.

Dang, Y. F., Shen, Y. B., Xu, X. Y., Wang, S. T., Meng, X. Z., Li, L. S., Zhang,

M., Hu, M. Y., Lv, L. Q., Wang, R. Q., & Li, J. L. (2017). Mannanbinding lectin-associated serine protease-1 (MASP-1) mediates

immune responses against Aeromonas hydrophila in vitro and in vivo

in grass carp. Fish & shellfish immunology, 66, 93-102.

Dobó, J., Szakács, D., Oroszlán, G., Kortvely, E., Kiss, B., Boros, E., Szász, R.,

Závodszky, P., Gál, P., & Pál, G. (2016). MASP-3 is the exclusive profactor D activator in resting blood: the lectin and the alternative

complement

pathways

are

fundamentally

linked. Scientific

reports, 6(1), 1-12.

Dodds, A. W., & Law, S. A. (1990). The complement component C4 of

mammals. Biochemical Journal, 265(2), 495-502.

Dunkelberger, J. R., & Song, W. C. (2010). Complement and its role in innate

and adaptive immune responses. Cell research, 20(1), 34.

Endo, Y., Takahashi, M., & Fujita, T. (2006). Lectin complement system and

pattern recognition. Immunobiology, 211(4), 283-293.

Fakruddin, M., Mohammad Mazumdar, R., Bin Mannan, K. S., Chowdhury,

A., & Hossain, M. (2013). Critical factors affecting the success of

cloning, expression, and mass production of enzymes by recombinant

E. coli. International Scholarly Research Notices, 2013.

Fan, Y., Zhang, X., Zhou, Y., Jiang, N., Liu, W., & Zeng, L. (2020). Molecular

cloning of Gibel carp (Carassius auratus gibelio) complement

component C3 and its expression profile after Cyprinid herpesvirus 2

infection. Journal of Veterinary Medical Science, 82(1), 47-55.

Fang, L., Jiang, W., Bae, W., & Inouye, M. (1997). Promoter-independent

cold-shock induction of cspA and its derepression at 37° C by mRNA

stabilization. Molecular microbiology, 23(2), 355-364.

89

FAO (Food and Agriculture Organization) (2020). Top 10 species groups in

global aquaculture 2020. FAO Fisheries and Aquaculture Division.

[Accessed

October

2022].

https://www.fao.org/3/cc0723en/cc0723en.pdf

Fenoll, A., Jado, I., Vicioso, D., & Casal, J. (1997). Dot blot assay for the

serotyping of pneumococci. Journal of Clinical Microbiology, 35(3), 764766.

Gaboriaud, C., Thielens, N. M., Gregory, L. A., Rossi, V., Fontecilla-Camps, J.

C., & Arlaud, G. J. (2004). Structure and activation of the C1 complex

of complement: unraveling the puzzle. Trends in immunology, 25(7),

368-373.

Goldberg, B. S., & Ackerman, M. E. (2020). Antibody‐mediated complement

activation in pathology and protection. Immunology and cell biology,

98(4), 305-317.

Goldenberg, D., Azar, I., Oppenheim, A. B., Brandi, A., Pon, C. L., &

Gualerzi, C. O. (1997). Role of Escherichia coli cspA promoter

sequences and adaptation of translational apparatus in the cold shock

response. Molecular and General Genetics MGG, 256(3), 282-290.

Hayashi, M., Machida, T., Ishida, Y., Ogata, Y., Omori, T., Takasumi, M.,

Endo, Y., Suzuki, T., Sekimata, M., Homma, Y., Ikawa, M., Ohira, H.,

Fujita, T., & Sekine, H. (2019). Cutting edge: role of MASP-3 in the

physiological activation of factor D of the alternative complement

pathway. The Journal of Immunology, 203(6), 1411-1416.

Holland, M. C. H., & Lambris, J. D. (2002). The complement system in

teleosts. Fish & shellfish immunology, 12(5), 399-420.

Ichiki, S., Kato-Unoki, Y., Somamoto, T., & Nakao, M. (2012). The binding

spectra of carp C3 isotypes against natural targets independent of the

binding specificity of their thioester. Developmental & Comparative

Immunology, 38(1), 10-16.

Janeway, C. A., Travers, P., Walport, M., & Shlomchik, M. J. (2001). The

structure of a typical antibody molecule. Immunobiology: The Immune

System in Health and Disease. 5th edition. Garland Science.

Johnson, R. J. (2013). The complement system. In Biomaterials Science (pp. 533545). Academic Press.

Jones, L. C. (2022). Assembly and Activation of the C1 Complex of

Complement (Doctoral dissertation, University of Leicester).

90

Katayama, H., Mizuno, R., & Mita, M. (2019). A novel approach for

preparing disulfide-rich peptide-KLH conjugate applicable to the

antibody production. Bioscience, biotechnology, and biochemistry, 83(10),

1791-1799.

Kato, Y., Nakao, M., Shimizu, M., Wariishi, H., & Yano, T. (2004).

Purification and functional assessment of C3a, C4a and C5a of the

common carp (Cyprinus carpio) complement. Developmental &

Comparative Immunology, 28(9), 901-910.

Kazi, T. A., Acharya, A., Mukhopadhyay, B. C., Mandal, S., Arukha, A. P.,

Nayak, S., & Biswas, S. R. (2022). Plasmid-Based Gene Expression

Systems for Lactic Acid Bacteria: A Review. Microorganisms, 10(6),

1132.

Kidmose, R. T., Laursen, N. S., Dobó, J., Kjaer, T. R., Sirotkina, S., Yatime, L.,

Sottrup-Jensen, L., Thiel, S., Gál, P., & Andersen, G. R. (2012).

Structural basis for activation of the complement system by

component C4 cleavage. Proceedings of the National Academy of

Sciences, 109(38), 15425-15430.

Kuroda, N., Naruse, K., Shima, A., Nonaka, M., & Sasaki, M. (2000).

Molecular cloning and linkage analysis of complement C3 and C4

genes of the Japanese medaka fish. Immunogenetics, 51(2), 117-128.

Law, S. A., & Dodds, A. W. (1997). The internal thioester and the covalent

binding properties of the complement proteins C3 and C4. Protein

Science, 6(2), 263-274.

Lee, Bao-Shiang, Jin-Sheng Huang, Lasanthi P. Jayathilaka, Jenny Lee, and

Shalini Gupta. Antibody production with synthetic peptides. In HighResolution Imaging of Cellular Proteins, pp. 25-47. Humana Press, New

York, NY, 2016.

Li, L., Shen, Y., Xu, X., Yang, W., & Li, J. (2020). Fish complement C4 gene

evolution and gene/protein regulatory network analyses and

simulated stereo conformation of C4–MASP–2 protein complex. Fish

& Shellfish Immunology, 107, 54-63.

Li, M. F., & Zhang, H. Q. (2022). An overview of complement systems in

teleosts. Developmental & Comparative Immunology, 104520.

Li, M. F., Sui, Z. H., & Sun, L. (2017). A teleost CD46 is involved in the

regulation of complement activation and pathogen infection. Scientific

reports, 7(1), 1-13.

91

Liszewski, M. K., Farries, T. C., Lublin, D. M., Rooney, I. A., & Atkinson, J. P.

(1996). Control of the complement system. Advances in immunology, 61,

201-283.

Liu, J., Wang, Y., Xiong, E., Hong, R., Lu, Q., Ohno, H., & Wang, J. Y. (2019).

Role of the IgM Fc receptor in immunity and tolerance. Frontiers in

immunology, 10, 529.

Matsushita, M., & Fujita, T. (2001). Ficolins and the lectin complement

pathway. Immunological reviews, 180(1), 78-85.

Matsushita, M., & Fujita, T. (2002). The role of ficolins in innate

immunity. Immunobiology, 205(4-5), 490-497.

Mamidi, S., Höne, S., & Kirschfink, M. (2017). The complement system in

cancer:

ambivalence

between

tumour

destruction

and

promotion. Immunobiology, 222(1), 45-54.

Meng, X. Z., Wang, S. T., Xu, X. Y., Dang, Y. F., Zhang, M., Zhang, J. H.,

Wang, R. Q., Shen, Y. B., & Li, J. L. (2020). Identification,

characterization, and immunological analysis of complement

component 4 from grass carp (Ctenopharyngodon idella). Fish &

shellfish immunology, 104, 527-536.

Moser, A. C., White, B., & Kovacs, F. A. (2021). Measuring Binding Constants

of His-Tagged Proteins Using Affinity Chromatography and Ni-NTA

Immobilized Enzymes. In Protein Downstream Processing (pp. 405-416).

Humana, New York, NY.

Mu, L., Yin, X., Wu, H., Han, K., Guo, Z., & Ye, J. (2020). MAp34 regulates

the non-specific cell immunity of monocytes/macrophages and

inhibits the lectin pathway of complement activation in a teleost

fish. Frontiers in immunology, 11, 1706.

Mu, L., Yin, X., Wu, H., Han, K., Wu, L., Ding, M., Bian, X., Li, B., Fu, S.,

Liang, F., Guo, Z., & Ye, J. (2019). Expression and functional

characterization of a mannose-binding lectin-associated serine

protease-1 (MASP-1) from Nile tilapia (Oreochromis niloticus) in host

defense against bacterial infection. Fish & Shellfish Immunology, 91, 6877.

Mutsuro, J., Tanaka, N., Kato, Y., Dodds, A. W., Yano, T., & Nakao, M.

(2005). Two divergent isotypes of the fourth complement component

from a bony fish, the common carp (Cyprinus carpio). The Journal of

Immunology, 175(7), 4508-4517.

Müller-Eberhard, H. J. (1988). Molecular organization and function of the

complement system. Annual review of biochemistry, 57(1), 321-347.

92

Nakao, M., & Somamoto, T. (2016). The evolution of complement system

functions and pathways in vertebrates. In The Evolution of the Immune

System (pp. 151-171). Academic Press.

Nakao, M., & Yano, T. (1998). Structural and functional identification of

complement components of the bony fish, carp (Cyprinus

carpio). Immunological reviews, 166(1), 27-38.

Nakao, M., Kajiya, T., Sato, Y., Somamoto, T., Kato-Unoki, Y., Matsushita,

M., Nakata, M., Fujita, T., & Yano, T. (2006). Lectin pathway of bony

fish complement: identification of two homologs of the mannosebinding lectin associated with MASP2 in the common carp (Cyprinus

carpio). The journal of immunology, 177(8), 5471-5479.

Nakao, M., Mutsuro, J., Nakahara, M., Kato, Y., & Yano, T. (2003). Expansion

of genes encoding complement components in bony fish: biological

implications of the complement diversity. Developmental &

Comparative Immunology, 27(9), 749-762.

Nakao, M., Tsujikura, M., Ichiki, S., Vo, T. K., & Somamoto, T. (2011). The

complement system in teleost fish: progress of post-homolog-hunting

researches. Developmental & Comparative Immunology, 35(12), 12961308.

Nakao, M., Yano, T., & Matsuyama, H. (1988). Partial purification and

characterization of the fourth component (C4) of carp

complement. Fish Pathology, 23(4), 243-250.

Natarajan, N. (2020). Investigation of protein-protein interactions in Tuberous

Sclerosis Complex (TSC) and structural identification of NetrinNTR (Doctoral dissertation, Indian Institute of Technology

Gandhinagar).

Nonaka, M. (2014). Evolution of the complement system. MACPF/CDC

Proteins-Agents of Defence, Attack and Invasion, 31-43.

Nonaka, M. I., Terado, T., Kimura, H., & Nonaka, M. (2017). Evolutionary

analysis of two complement C4 genes: ancient duplication and

conservation during jawed vertebrate evolution. Developmental &

Comparative Immunology, 68, 1-11.

Pushpa, K., Gireesh-Babu, P., Rajendran, K. V., Purushothaman, C. S.,

Dasgupta, S., & Makesh, M. (2014). Molecular cloning, sequencing and

tissue-level expression of complement C3 of Labeo rohita (Hamilton,

1822). Fish & Shellfish Immunology, 40(1), 319-330.

93

Reis, E. S., Mastellos, D. C., Hajishengallis, G., & Lambris, J. D. (2019). New

insights into the immune functions of complement. Nature Reviews

Immunology, 19(8), 503-516.

Robertson, J., Bessonov, K., Schonfeld, J., & Nash, J. H. (2020). Universal

whole-sequence-based plasmid typing and its utility to prediction of

host range and epidemiological surveillance. Microbial Genomics, 6(10).

Rodríguez-Beltrán, J., DelaFuente, J., Leon-Sampedro, R., MacLean, R. C., &

San Millan, A. (2021). Beyond horizontal gene transfer: the role of

plasmids in bacterial evolution. Nature Reviews Microbiology, 19(6),

347-359.

Rosbjerg, A., Würzner, R., Garred, P., & Skjoedt, M. O. (2021). Masp-1 and

masp-3 bind directly to aspergillus fumigatus and promote

complement activation and phagocytosis. Journal of Innate

Immunity, 13(4), 211-224.

Sakai, D. K. (1992). Repertoire of complement in immunological defense

mechanisms of fish. Annual Review of fish diseases, 2, 223-247.

Sarma, J. V., & Ward, P. A. (2011). The complement system. Cell and tissue

research, 343(1), 227-235.

Stavnezer, J. (1996). Immunoglobulin class switching. Current opinion in

immunology, 8(2), 199-205.

Stavnezer, J., & Schrader, C. E. (2014). IgH chain class switch recombination:

mechanism and regulation. The Journal of Immunology, 193(11), 53705378.

Sunyer, J. O., & Lambris, J. D. (1998). Evolution and diversity of the

complement system of poikilothermic vertebrates. Immunological

reviews, 166(1), 39-57.

Sunyer, J. O., & Tort, L. (1995). Natural hemolytic and bactericidal activities

of sea bream Sparus aurata serum are effected by the alternative

complement

pathway. Veterinary

Immunology

and

Immunopathology, 45(3-4), 333-345.

Sunyer, J. O., Tort, L., & Lambris, J. D. (1997). Structural C3 diversity in fish:

characterization of five forms of C3 in the diploid fish Sparus

aurata. The Journal of Immunology, 158(6), 2813-2821.

Tam, S. K., de Haan, B. J., Faas, M. M., Hallé, J. P., Yahia, L. H., & de Vos, P.

(2009). Adsorption of human immunoglobulin to implantable

alginate-poly-L-lysine microcapsules: effect of microcapsule

composition. Journal of Biomedical Materials Research Part A: An Official

94

Journal of The Society for Biomaterials, The Japanese Society for

Biomaterials, and The Australian Society for Biomaterials and the Korean

Society for Biomaterials, 89(3), 609-615.

Tao, X., & Xu, A. (2016). Basic Knowledge of Immunology. In Amphioxus

Immunity (pp. 15-42). Academic Press.

Terado, T., Okamura, K., Ohta, Y., Shin, D. H., Smith, S. L., Hashimoto, K.,

Takemoto, T., Nonaka, M. I., Kimura, H., Flajnik, M. F., & Nonaka, M.

(2003). Molecular cloning of C4 gene and identification of the class III

complement region in the shark MHC. The Journal of

Immunology, 171(5), 2461-2466.

Thai, C. T., & Ogata, R. T. (2003). Expression and characterization of the

C345C/NTR domains of complement components C3 and C5. The

Journal of Immunology, 171(12), 6565-6573.

Venkatraman Girija, U., Gingras, A. R., Marshall, J. E., Panchal, R., Sheikh,

M. A., Harper, J. A., Gál, P., Schwaeble, W. J., Mitchell, D. A., Moody,

P. C., & Wallis, R. (2013). Structural basis of the C1q/C1s interaction

and its central role in assembly of the C1 complex of complement

activation. Proceedings of the National Academy of Sciences, 110(34),

13916-13920.

Vidarsson, G., Dekkers, G., & Rispens, T. (2014). IgG subclasses and

allotypes: from structure to effector functions. Frontiers in

immunology, 5, 520.

Walport, M. J. (2001). Complement. New England Journal of Medicine, 344(14),

1058-1066.

Wang, J. (2003). Domains of Complement Components C3 and C4 (Doctoral

dissertation, University of Toronto).

Wang, T., & Secombes, C. J. (2003). Complete sequencing and expression of

three complement components, C1r, C4 and C1 inhibitor, of the

classical activation pathway of the complement system in rainbow

trout Oncorhynchus mykiss. Immunogenetics, 55(9), 615-628.

West, E. E., Kolev, M., & Kemper, C. (2018). Complement and the regulation

of T cell responses. Annual review of immunology, 36, 309-338.

Wetsel, R. A., Kildsgaard, J., & Haviland, D. L. (2000). Complement

Anaphylatoxins (C3a, C4a, C5a) and Their Receptors (C3aR,

C5aR/CD88) as Therapeutic Targets in Inflammation. In Lambris J.D.,

Holers V.M. (eds) Therapeutic Interventions in the Complement System (pp.

113-153).

95

Xu, K., Acharya, P., Kong, R., Cheng, C., Chuang, G. Y., Liu, K., ... & Kwong,

P. D. (2018). Epitope-based vaccine design yields fusion peptidedirected antibodies that neutralize diverse strains of HIV-1. Nature

medicine, 24(6), 857-867.

Zannierah, M. A., Sukor, R., Jinap, S., Meor-Hussin, A. S., & MK, I. I. (2018).

Purification of anti-peptide rabbit polyclonal antibody raised against

αs1-casein from goat’s milk. Jointly Published by The 4th International

Asian-Australasian Dairy Goat Conference, 420.

Zarkadis, I. K., Mastellos, D., & Lambris, J. D. (2001). Phylogenetic aspects of

the

complement

system. Developmental

Comparative

Immunology, 25(8-9), 745-762.

Zhang, Y., Muyrers, J. P., Testa, G., & Stewart, A. F. (2000). DNA cloning by

homologous

recombination

in

Escherichia

coli. Nature

biotechnology, 18(12), 1314-1317.

Zhao, R., Xiao, Q., Li, M., Ren, W., Xia, C., Liu, X., Li, Y., Tan, T., Wu, D., &

Sun, L. (2020). Rational design of peptides for identification of linear

epitopes and generation of neutralizing monoclonal antibodies

against DKK2 for cancer therapy. Antibody therapeutics, 3(2), 63-70.

96

APPENDICES

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE)

and Western Blotting

Appendix A1: SDS-PAGE Solutions

1. 2X Laemmli sample buffer (10 ml)

Tris-HCl 1 M (pH 6.8), BPB dye

Glycerol

SDS 10%

dH2O

(NOTE: Aliquot and store at -20°C)

2.5 ml

2 ml

4 ml

1.5 ml

2. 2X Laemmli sample buffer (with 2ME)

2X Laemmli sample buffer

2-Mercaptoethanol (2ME)

(NOTE: Aliquot and store at -20°C)

950 µl

50 µl

3. Monomer stock solution (30% Acryl A, 0.8% Bis)

Acrylamide

Bis

4. SDS 10% (100 ml)

Sodium dodecyl sulfate (SDS)

dH2O added to make 100 ml

5. Initiator (APS 2.5%)

Ammonium persulfate (APS)

dH2O

6. Electrophoresis running buffer (10X stock) (1 L)

Tris 0.25 M

Glycine 1.92 M

dH2O added to make 1 L

7. Electrophoresis running buffer (1X) (500 ml)

Electrophoresis running buffer 10X stock

SDS 10%

dH2O

97

60 g

1.6 g

10 g

0.025 g

1 ml

30.29 g

144.1 g

50 mL

5 mL

445 mL

Optimized SDS gel preparation

Solutions

30% Acryl A, 0.8% Bis

Tris-HCl 0.75 M, pH 8.8

Tris-HCl 1 M, BPB dye, pH 6.8

Ammonium persulfate (APS) 2.5%

dH2O

Total volume before TEMED

TEMED

10% Resolving gel

(µl)

2500

3750

240

1010

7500

4% Stacking gel

(µl)

400

3750

35

2190

3000

15

1. Prepare resolving gel first by mixing all solutions in a small beaker/50

ml Falcon tube. Keep the mixture on ice until ready to use. Add

TEMED only when ready to use because the mixture will immediately

start to solidify as soon as TEMED is added due to it being a

solidifying agent.

2. Pipette the resolving gel mixture in between the glass cassettes.

Immediately add a layer of dH2O (1 ml) on top of the resolving gel to

ensure the gel is straight. Leave the gel to solidify (15 – 30 min).

3. After solidifying, remove the dH2O layer by tipping it over and using

a filter paper. Put in a plastic comb between the glass cassettes above

the solidified resolving gel.

4. Prepare the stacking gel mixture and slowly pipette it in. Make sure

there are no air bubbles. Leave it to solidify (10 – 15 min).

5. After solidifying, carefully remove the comb and immerse the gel in

electrophoresis running buffer 1X. Gel is ready to use.

Appendix A2: Protein electrotransfer

1. Transfer buffer (1 L)

Electrophoresis running buffer (10X stock)

Tris 0.75 M (9.085 g + dH2O to make 100 ml)

Methanol (10% of total solution)

SDS 10%

dH2O to make 1 L

100 ml

100 ml

100 ml

2 ml

698 ml

Assembly

1. Cut 8 pieces of filter paper (6 cm x 5 cm).

2. Cut 1 piece of PVDF membrane (6 cm x 6 cm).

3. Using forceps, activate the PVDF membrane in methanol for 10

seconds. Be sure to wear gloves. Keep the activated PVDF membrane

in transfer buffer until ready to use.

4. Submerge the filter paper pieces in transfer buffer for at least 5 min

before use.

5. Stack:

• 4 filter paper ® PVDF membrane ® SDS gel ® 4 filter paper

98

Pour some transfer buffer in between every layer to keep

everything wet.

Remove air bubbles every layer using a roller.

Appendix A3: Western Blotting Solutions

1. Phosphate buffer saline (PBS) (25X stock) (1 L)

Sodium chloride (NaCl)

Potassium chloride (KCl)

NA2HPO4

(disodium phosphate/sodium hydrogenphosphate)

KH2PO4

200 g

5g

36 g

5g

(monopotassium phosphate/potassium dihydrogen phosphate)

Dissolve in ~800 ml dH2O

Adjust pH to 7.4 with HCl/NaOH

Add dH2O to make 1 L

2. Phosphate buffer saline (PBS) (1X) (500 ml)

PBS (25X stock)

dH2O

3. PBS/T (PBS with 0.05% Tween-20)

PBS (1X)

Tween-20

Mix well before use

20 ml

480 ml

1L

0.5 ml

4. Blocking buffer (PBS + 5% BSA)

Skim milk

PBS (1X)

0.5 g

10 ml

5. PBS + 1% BSA

Skim milk

PBS (1X)

0.1 g

10 ml

Appendix A4: Protein Purification Solutions

1. Sodium azide (NaN3) (10% stock) (50 ml)

Sodium azide (NaN3)

Add dH2O to make 50 ml

5g

2. Tris-buffer saline (TBS) (1X) + NaN3 0.02% (500 ml)

Tris

3.025 g

Sodium chloride (NaCl)

4.39 g

Add dH2O to make 500 ml

NaN3 10% stock

1 ml

99

3. Acidic buffer: Gly-HCl 0.1 M, pH 2.5 (40 ml)

Glycine

dH2O

Adjust to pH 2.5 with HCl

Add dH2O to make 40 ml

4. Basic buffer: Tris-HCl 1 M, pH 9 (40 ml)

Tris

dH2O

Adjust to pH 9 with HCl

Add dH2O to make 40 ml

5. NaHCO3 0.1 M, NaCl 0.5 M, pH 8.3 (100 ml)

Sodium hydrogencarbonate (NaHCO3)

Sodium chloride (NaCl)

dH2O

Adjust to pH 8.3

Add dH2O to make 100 ml

0.3 g

30 ml

4.85 g

30 ml

0.84 g

2.922 g

80 ml

6. Phenylmethylsulfonyl fluoride (PMSF) (100 mM stock) (1 ml)

Phenylmethylsulfonyl fluoride (PMSF)

0.0174 g

2-propanol

1 ml

7. Phenylmethylsulfonyl fluoride (PMSF) 0.5 mM in a 10 ml-solution

PMSF (100 mM stock)

50 µl

Solution

10 ml

8. AESBF (Pefabloc) (100 mM stock) (1 ml)

Pefabloc

dH2O

0.024 g

1 ml

9. AESBF (Pefabloc) 2 mM in a 10 ml-solution

Pefabloc (100 mM stock)

0.2 ml

10. AESBF (Pefabloc) 0.5 mM in a solution

Pefabloc (100 mM stock)

50 µl

11. TBS + EDTA 10 mM (50 ml)

EDTA

TBS 1X

0.186 g

50 ml

12. Starting buffer (SB), Tris-HCl 50 mM, NaCl 200 mM, CaCl2 10 mM,

pH 7.8 (500 ml)

Tris-HCl (1 M stock)

25 ml

Sodium chloride (NaCl)

5.844 g

Calcium chloride (CaCl2)

0.735 g

dH2O

480 ml

100

Adjust to pH 7.8

Add dH2O to make 500 ml

13. Methyl-a-mannopyranoside (MaM) in SB (300 mM stock) (30 ml)

Methyl-a-mannopyranoside (MaM)

1.748 g

Starting buffer (SB)

30 ml

14. Methyl-a-mannopyranoside (MaM) in SB (50 mM) (10 ml)

MaM (300 mM stock)

1.67 ml

Starting buffer (SB)

8.33 ml

15. Methyl-a-mannopyranoside (MaM) in SB (5 mM) (10 ml)

MaM (50 mM)

1 ml

Starting buffer (SB)

9 ml

16. EDTA 10 mM in PBS (10 ml)

EDTA [2NA (EDTA.2Na) Dodite]

PBS

0.037 g

10 ml

Appendix A4: Protein Expression and Purification

1. Lysozyme (10 mg/ml stock)

Lysozyme

dH2O

0.01 g

1 ml

2. Lysis buffer (1% TX100, TBS, lysozyme 100 µg/ml)

Triton X-100 (TX100)

TBS 1X

Lysozyme (10 mg/ml stock)

0.2 ml

19.8 ml

0.2 ml

3. Sodium phosphate buffer (NaPB) (200 mM stock) (50 ml)

NaH2PO4–H2O

1.38 g

(Sodium phosphate monobasic monohydrate)

Na2HPO4

1.42 g

(Disodium phosphate)

Add dH2O to make 50 ml, adjusted to pH 7.2

4. Sodium chloride (NaCl) (3 M stock) (50 ml)

NaCl

Add dH2O to make 50 ml

8.77 g

5. Imidazole (1 M stock) (50 ml)

Imidazole

Add dH2O to make 50 ml

3.4 g

6. Binding buffer (NaPB 20 mM, NaCl 300 mM, Imidazole 10 mM) (50

ml)

101

NaPB (200 mM stock)

NaCl (3 M stock)

Imidazole (1 M stock)

dH2O

5 ml

5 ml

0.5 ml

39.5 ml

7. Wash buffer I (NaPB 20 mM, NaCl 300 mM, Imidazole 20 mM) (50

ml)

NaPB (200 mM stock)

5 ml

NaCl (3 M stock)

5 ml

Imidazole (1 M stock)

1 ml

dH2O

39 ml

8. Wash buffer II (NaPB 20 mM, NaCl 300 mM, Imidazole 50 mM) (50

ml)

NaPB (200 mM stock)

5 ml

NaCl (3 M stock)

5 ml

Imidazole (1 M stock)

2.5 ml

dH2O

37.5 ml

9. Elution buffer (NaPB 20 mM, NaCl 300 mM, Imidazole 250 mM) (50

ml)

NaPB (200 mM stock)

5 ml

NaCl (3 M stock)

5 ml

Imidazole (1 M stock)

12.5 ml

dH2O

27.5 ml

102

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る