リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Association between Patients’ Body Mass Index and the Effect of Monophasic Pulsed Microcurrent Stimulation on Pressure Injury Healing」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Association between Patients’ Body Mass Index and the Effect of Monophasic Pulsed Microcurrent Stimulation on Pressure Injury Healing

Yoshikawa, Yoshiyuki Maeshige, Noriaki Yamaguchi, Atomu Uemura, Mikiko Hiramatsu, Terutaka Tsuji, Yoriko Terashi, Hiroto 神戸大学

2023.09

概要

This secondary analysis study aimed to detect individual variables that influence the efficacy of monophasic pulsed microcurrent on pressure injury healing. Eleven patients with pressure injuries showing delayed healing underwent a microcurrent stimulation period and a placebo period. We analyzed the correlation between the individual variables and the following three outcomes using monophasic pulsed microcurrent: the wound reduction rate in the electrical stimulation period, the reduction rate in the placebo period, and the difference between these two reduction rates. Furthermore, the patients were divided into two groups, one with a wound reduction rate of more than 10% and the other with less than 10%, and the relationship between each variable was compared. As a result, the wound reduction rate in the electrical stimulation period and the difference in the reduction rate between the two periods showed significant positive correlations with patients’ body mass index. In addition, a significant difference was observed in the body mass index between subjects with a reduction rate of 10% or higher and those with a reduction rate of less than 10%. This study found a correlation between the effect of monophasic pulsed microcurrent for pressure injury healing and the level of patients’ body mass index.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Monaco, J.L.; Lawrence, W. Acute wound healing. Clin. Plast. Surg. 2003, 30, 1–12. [CrossRef] [PubMed]

Greaves, N.S.; Iqbal, S.A.; Baguneid, M.; Bayat, A. The role of skin substitutes in the management of chronic cutaneous wounds.

Wound Repair Regen. 2013, 21, 194–210. [CrossRef] [PubMed]

European Pressure Ulcer Advisory Panel; National Pressure Injury Advisory Panel; Pan Pacific Pressure Injury Alliance. Prevention

and Treatment of Pressure Ulcers/Injuries: Quick Reference Guide; European Pressure Ulcer Advisory Panel: Prague, Czech Republic, 2019.

Dealey, C.; Posnett, J.; Walker, A. The cost of pressure ulcers in the United Kingdom. J. Wound Care 2012, 21, 261–266. [CrossRef]

Lala, D.; Spaulding, S.J.; Burke, S.M.; Houghton, P.E. Electrical stimulation therapy for the treatment of pressure ulcers in

individuals with spinal cord injury: A systematic review and meta-analysis. Int. Wound J. 2016, 13, 1214–1226. [CrossRef]

Liu, L.Q.; Moody, J.; Traynor, M.; Dyson, S.; Gall, A. A systematic review of electrical stimulation for pressure ulcer prevention

and treatment in people with spinal cord injuries. J. Spinal Cord Med. 2014, 37, 703–718. [CrossRef] [PubMed]

Uemura, M.; Maeshige, N.; Koga, Y.; Ishikawa-Aoyama, M.; Miyoshi, M.; Sugimoto, M.; Usami, M. Monophasic pulsed 200-µA

current promotes galvanotaxis with polarization of actin filament and integrin α2β1 in human dermal fibroblasts. Eplasty 2016,

16, e6. [PubMed]

Yoshikawa, Y.; Sugimoto, M.; Uemura, M.; Matsuo, M.; Maeshige, N.; Niba, E.T.E.; Shuntoh, H. Monophasic Pulsed Microcurrent

of 1–8 Hz Increases the Number of Human Dermal Fibroblasts. Prog. Rehabil. Med. 2016, 1, 20160005. [CrossRef]

Yoshikawa, Y.; Hiramatsu, T.; Sugimoto, M.; Uemura, M.; Mori, Y.; Ichibori, R. Efficacy of Low-frequency Monophasic Pulsed

Microcurrent Stimulation Therapy in Undermining Pressure Injury: A Double-blind Crossover-controlled Study. Prog. Rehabil.

Med. 2022, 7, 20220045. [CrossRef]

Arora, M.; Harvey, L.A.; Chhabra, H.S.; Sharawat, R.; Glinsky, J.V.; Cameron, I.D. The reliability of measuring wound undermining

in people with spinal cord injury. Spinal Cord 2017, 55, 304–306. [CrossRef]

Matsui, Y.; Furue, M.; Sanada, H.; Tachibana, T.; Nakayama, T.; Sugama, J.; Furuta, K.; Tachi, M.; Tokunaga, K.; Miyachi, Y.

Development of the DESIGN-R with an observational study: An absolute evaluation tool for monitoring pressure ulcer wound

healing. Wound Repair Regen. 2011, 19, 309–315. [CrossRef]

Kaiser, M.J.; Bauer, J.M.; Ramsch, C.; Uter, W.; Guigoz, Y.; Cederholm, T.; Thomas, D.R.; Anthony, P.; Charlton, K.E.; Maggio, M.;

et al. Validation of the Mini Nutritional Assessment Short-Form (MNA® -SF): A practical tool for identification of nutritional

status. J. Nutr. Health Aging 2009, 13, 782–788. [CrossRef]

Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013, 48,

452–458. [CrossRef] [PubMed]

Singer, P. Nutritional care to prevent and heal pressure ulcers. Isr. Med. Assoc. J. IMAJ 2002, 4, 713–716. [PubMed]

Mahmoodpoor, A.; Shadvar, K.; Saghaleini, S.H.; Dehghan, K.; Ostadi, Z.; Sanaie, S. Pressure ulcer and nutrition. Indian J. Crit.

Care Med. 2018, 22, 283–289. [CrossRef] [PubMed]

Biomedicines 2023, 11, 2379

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

7 of 7

Karahan, A.; AAbbasoglu,

˘ A.; I¸sık, S.A.; Cevik, B.; Saltan, Ç.; Elba¸s, N.Ö.; Yalılı, A. Factors affecting wound healing in individuals

with pressure ulcers: A retrospective study. Ostomy Wound Manag. 2018, 64, 32–39. [CrossRef]

Bodine, S.C. Disuse-induced muscle wasting. Int. J. Biochem. Cell Biol. 2013, 45, 2200–2208. [CrossRef]

Ghaly, P.; Iliopoulos, J.; Ahmad, M. The role of nutrition in wound healing: An overview. Br. J. Nurs. 2021, 30, S38–S42. [CrossRef]

[PubMed]

Kumar, S.; Behl, T.; Sachdeva, M.; Sehgal, A.; Kumari, S.; Kumar, A.; Kaur, G.; Yadav, H.N.; Bungau, S. Implicating the effect of

ketogenic diet as a preventive measure to obesity and diabetes mellitus. Life Sci. 2021, 264, 118661. [CrossRef]

Elswaidy, N.R.; Ellatif, R.A.A.; Ibrahim, M.A. Ketogenic diet enhances delayed wound healing in immunocompromised rats:

A histological and immunohistochemical study. Egypt. J. Histol. 2021, 45, 1111–1124. [CrossRef]

Zhang, Z.; Kruglikov, I.; Zhao, S.; Zi, Z.; Gliniak, C.M.; Li, N.; Wang, M.; Zhu, Q.; Kusminski, C.M.; Scherer, P.E. Dermal adipocytes

contribute to the metabolic regulation of dermal fibroblasts. Exp. Dermatol. 2021, 30, 102–111. [CrossRef]

Zhang, Z.; Shao, M.; Hepler, C.; Zi, Z.; Zhao, S.; An, Y.A.; Zhu, Y.; Ghaben, A.L.; Wang, M.-Y.; Li, N.; et al. Dermal adipose tissue

has high plasticity and undergoes reversible dedifferentiation in mice. J. Clin. Investig. 2019, 129, 5327–5342. [CrossRef]

Aroca, G.G.P.; Viana, L.G.; Costa, R.F.D.A.; Schmildt, D.; De Sousa, L. Thermographic and anthropometric assessment of electrical

stimulation on localized body fat. Fisioter. Mov. 2017, 30, 29–37. [CrossRef]

Shook, B.A.; Wasko, R.R.; Mano, O.; Rutenberg-Schoenberg, M.; Rudolph, M.C.; Zirak, B.; Rivera-Gonzalez, G.C.; López-Giráldez,

F.; Zarini, S.; Rezza, A.; et al. Dermal Adipocyte Lipolysis and Myofibroblast Conversion Are Required for Efficient Skin Repair.

Cell Stem Cell 2020, 26, 880–895.e6. [CrossRef]

Badhe, R.V.; Nipate, S.S. Low-intensity current (LIC) stimulation of subcutaneous adipose derived stem cells (ADSCs)—A missing

link in the course of LIC based wound healing. Med. Hypotheses 2019, 125, 79–83. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る