リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Industrial Study for Therapeutic Application of Bacteriophage against Staphylococcus aureus」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Industrial Study for Therapeutic Application of Bacteriophage against Staphylococcus aureus

竹内, 一平 筑波大学 DOI:10.15068/0002008168

2023.09.04

概要

In order to understand the nature of S. aureus phages for the manufacturing, S. ...

この論文で使われている画像

参考文献

1.

Humphreys H. 2012. Staphylococcus. p. 176-182. In Greenwood D, Barer M,

Slack R, Irving W (ed), Medical microbiology: a guide to microbial infections:

pathogenesis, immunity, laboratory diagnosis and control, 18th ed. Edinburgh;

New York: Churchill Livingstone/Elsevier.

2.

Enright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt BG. 2002.

The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA).

Proc Natl Acad Sci USA 99: 7687-7692.

3.

Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A,

Harbarth S. 2018. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis

Primers 4: 18033.

4.

Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP,

Carugati M, Holland TL, Fowler VG, Jr. 2019. Methicillin-resistant

Staphylococcus aureus: an overview of basic and clinical research. Nat Rev

Microbiol 17: 203-218.

5.

Choo EJ, Chambers HF. 2016. Treatment of methicillin-resistant Staphylococcus

aureus bacteremia. Infect Chemother 48: 267-273.

6.

O'Neill J. 2014. Antimicrobial resistance: tackling a crisis for the health and

wealth

of

nations

[webpage].

https://amr-

review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20

a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pd

f. Accessed

7.

WHO. 2015.

Global action plan on antimicrobial resistance [webpage].

https://apps.who.int/iris/rest/bitstreams/864486/retrieve. Accessed

8.

Ryan EM, Gorman SP, Donnelly RF, Gilmore BF. 2011. Recent advances in

bacteriophage therapy: how delivery routes, formulation, concentration and

timing influence the success of phage therapy. J Pharm Pharmacol 63: 1253-1264.

71

9.

Chan BK, Abedon ST, Loc-Carrillo C. 2013. Phage cocktails and the future of

phage therapy. Future Microbiol 8: 769-783.

10.

Aslam S, Lampley E, Wooten D, Karris M, Benson C, Strathdee S, Schooley RT.

2020. Lessons learned from the first 10 consecutive cases of intravenous

bacteriophage therapy to treat multidrug-resistant bacterial infections at a single

center in the United States. Open Forum Infect Dis 7: ofaa389.

11.

Leitner L, Ujmajuridze A, Chanishvili N, Goderdzishvili M, Chkonia I, Rigvava

S, Chkhotua A, Changashvili G, McCallin S, Schneider MP. 2020. Intravesical

bacteriophages for treating urinary tract infections in patients undergoing

transurethral resection of the prostate: a randomised, placebo-controlled, doubleblind clinical trial. Lancet Infect Dis 3099: 30330-30333.

12.

Matsuzaki S, Yasuda M, Nishikawa H, Kuroda M, Ujihara T, Shuin T, Shen Y, Jin

Z, Fujimoto S, Nasimuzzaman MD, Wakiguchi H, Sugihara S, Sugiura T, Koda S,

Muraoka A, Imai S. 2003. Experimental protection of mice against lethal

Staphylococcus aureus infection by novel bacteriophage phiMR11. J Infect Dis

187: 613-624.

13.

Petrovic Fabijan A, Lin RCY, Ho J, Maddocks S, Ben Zakour NL, Iredell JR,

Westmead Bacteriophage Therapy Team. 2020. Safety of bacteriophage therapy

in severe Staphylococcus aureus infection. Nat Microbiol 5: 465-472.

14.

Takemura-Uchiyama I, Uchiyama J, Kato S, Inoue T, Ujihara T, Ohara N, Daibata

M, Matsuzaki S. 2013. Evaluating efficacy of bacteriophage therapy against

Staphylococcus aureus infections using a silkworm larval infection model. FEMS

Microbiol Lett 347: 52-60.

15.

Wills QF, Kerrigan C, Soothill JS. 2005. Experimental bacteriophage protection

against Staphylococcus aureus abscesses in a rabbit model. Antimicrob Agents

Chemother 49: 1220-1221.

16.

Febvre HP, Rao S, Gindin M, Goodwin NDM, Finer E, Vivanco JS, Lu S, Manter

72

DK, Wallace TC, Weir TL. 2019. PHAGE study: effects of supplemental

bacteriophage intake on inflammation and gut microbiota in healthy adults.

Nutrients 11: 666.

17.

Pirnay JP, De Vos D, Verbeken G, Merabishvili M, Chanishvili N, Vaneechoutte

M, Zizi M, Laire G, Lavigne R, Huys I, Van den Mooter G, Buckling A,

Debarbieux L, Pouillot F, Azeredo J, Kutter E, Dublanchet A, Gorski A, Adamia

R. 2011. The phage therapy paradigm: Prêt-à-Porter or Sur-mesure? Pharm Res

28: 934-937.

18.

McCallin S, Alam Sarker S, Barretto C, Sultana S, Berger B, Huq S, Krause L,

Bibiloni R, Schmitt B, Reuteler G, Brussow H. 2013. Safety analysis of a Russian

phage cocktail: from metagenomic analysis to oral application in healthy human

subjects. Virology 443: 187-196.

19.

Patey O, McCallin S, Mazure H, Liddle M, Smithyman A, Dublanchet A. 2018.

Clinical Indications and Compassionate Use of Phage Therapy: Personal

Experience and Literature Review with a Focus on Osteoarticular Infections.

Viruses 11.

20.

Jault P, Leclerc T, Jennes S, Pirnay JP, Que YA, Resch G, Rousseau AF, Ravat F,

Carsin H, Le Floch R, Schaal JV, Soler C, Fevre C, Arnaud I, Bretaudeau L,

Gabard J. 2019. Efficacy and tolerability of a cocktail of bacteriophages to treat

burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised,

controlled, double-blind phase 1/2 trial. Lancet Infect Dis 19: 35-45.

21.

Bretaudeau L, Tremblais K, Aubrit F, Meichenin M, Arnaud I. 2020. Good

manufacturing practice (GMP) compliance for phage therapy medicinal products.

Front Microbiol 11: 1161.

22.

Mutti M, Corsini L. 2019. Robust approaches for the production of active

ingredient and drug product for human phage therapy. Front Microbiol 10: 2289.

23.

Finkler C, Krummen L. 2016. Introduction to the application of QbD principles

73

for the development of monoclonal antibodies. Biologicals 44: 282-290.

24.

Mishra V, Thakur S, Patil A, Shukla A. 2018. Quality by design (QbD) approaches

in current pharmaceutical set-up. Expert Opin Drug Deliv 15: 737-758.

25.

Wang B, Bowles-Welch AC, Yeago C, Roy K. 2022. Process analytical

technologies in cell therapy manufacturing: state-of-the-art and future directions.

Adv Manuf Process 4: e10106.

26.

Tustian AD, Bak H. 2021. Assessment of quality attributes for adeno-associated

viral vectors. Biotechnol Bioeng 118: 4186-4203.

27.

Synnott AJ, Kuang Y, Kurimoto M, Yamamichi K, Iwano H, Tanji Y. 2009.

Isolation from sewage influent and characterization of novel Staphylococcus

aureus bacteriophages with wide host ranges and potent lytic capabilities. Appl

Environ Microbiol 75: 4483-4490.

28.

Kreiswirth BN, Lofdahl S, Betley MJ, O'Reilly M, Schlievert PM, Bergdoll MS,

Novick RP. 1983. The toxic shock syndrome exotoxin structural gene is not

detectably transmitted by a prophage. Nature 305: 709-712.

29.

Osada K, Takeuchi I, Miyanaga K, Tanji Y. 2017. Coevolution between

Staphylococcus aureus isolated from mastitic milk and its lytic bacteriophage

ΦSA012 in batch co-culture with serial transfer. Biochem Eng J 126: 16-23.

30.

Bae T, Schneewind O. 2006. Allelic replacement in Staphylococcus aureus with

inducible counter-selection. Plasmid 55: 58-63.

31.

Carlson K. 2005. Working with bacteriophages: common techniques and

methodological approaches. p. 437-494. In Kutter E, Sulakvelidze A (ed),

Bacteriophages: biology and applications. CRC press, Boca Raton, FL, USA.

32.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local

alignment search tool. J Mol Biol 215: 403-410.

33.

Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of

transfer RNA genes in genomic sequence. Nucleic Acids Res 25: 955-964.

74

34.

Laslett D, Canback B. 2004. ARAGORN, a program to detect tRNA genes and

tmRNA genes in nucleotide sequences. Nucleic Acids Res 32: 11-16.

35.

Schenk S, Laddaga RA. 1992. Improved method for electroporation of

Staphylococcus aureus. FEMS Microbiol Lett 73: 133-138.

36.

Lee CY, Buranen SL, Ye ZH. 1991. Construction of single-copy integration

vectors for Staphylococcus aureus. Gene 103: 101-105.

37.

Jeong DW, Cho H, Lee H, Li C, Garza J, Fried M, Bae T. 2011. Identification of

the P3 promoter and distinct roles of the two promoters of the SaeRS twocomponent system in Staphylococcus aureus. J Bacteriol 193: 4672-4684.

38.

Yao J, Zhong J, Fang Y, Geisinger E, Novick RP, Lambowitz AM. 2006. Use of

targetrons to disrupt essential and nonessential genes in Staphylococcus aureus

reveals temperature sensitivity of Ll.LtrB group II intron splicing. RNA 12: 12711281.

39.

Uchiyama J, Takemura-Uchiyama I, Kato S, Sato M, Ujihara T, Matsui H, Hanaki

H, Daibata M, Matsuzaki S. 2014. In silico analysis of AHJD-like viruses,

Staphylococcus aureus phages S24-1 and S13', and study of phage S24-1

adsorption. MicrobiologyOpen 3: 257-270.

40.

Baptista C, Santos MA, Sao-Jose C. 2008. Phage SPP1 reversible adsorption to

Bacillus subtilis cell wall teichoic acids accelerates virus recognition of membrane

receptor YueB. J Bacteriol 190: 4989-4996.

41.

Azam AH, Hoshiga F, Takeuchi I, Miyanaga K, Tanji Y. 2018. Analysis of phage

resistance in Staphylococcus aureus SA003 reveals different binding mechanisms

for the closely related Twort-like phages SA012 and SA039. Appl Microbiol

Biotechnol 102: 8963-8977.

42.

Stewart CR, Gaslightwala I, Hinata K, Krolikowski KA, Needleman DS, Peng AS,

Peterman MA, Tobias A, Wei P. 1998. Genes and regulatory sites of the "hosttakeover module" in the terminal redundancy of Bacillus subtilis bacteriophage

75

SPO1. Virology 246: 329-340.

43.

Łobocka M, Hejnowicz MS, Dąbrowski K, Gozdek A, Kosakowski J, Witkowska

M, Ulatowska MI, Weber-Dąbrowska B, Kwiatek M, Parasion S, Gawor J,

Kosowska H, Głowacka A. 2012. Genomics of staphylococcal twort-like phages

- potential therapeutics of the post-antibiotic era. p. 143-216, Advances in Virus

Research, vol 83. Academic Press.

44.

Alcorlo M, Gonzalez-Huici V, Hermoso JM, Meijer WJ, Salas M. 2007. The

phage phi29 membrane protein p16.7, involved in DNA replication, is required

for efficient ejection of the viral genome. J Bacteriol 189: 5542-5549.

45.

Fraser JS, Yu Z, Maxwell KL, Davidson AR. 2006. Ig-like domains on

bacteriophages: a tale of promiscuity and deceit. J Mol Biol 359: 496-507.

46.

Fraser JS, Maxwell KL, Davidson AR. 2007. Immunoglobulin-like domains on

bacteriophage: weapons of modest damage? Curr Opin Microbiol 10: 382-387.

47.

Samson JE, Magadan AH, Sabri M, Moineau S. 2013. Revenge of the phages:

defeating bacterial defences. Nat Rev Microbiol 11: 675-687.

48.

Brun E, Johnson PE, Creagh AL, Tomme P, Webster P, Haynes CA, McIntosh LP.

2000. Structure and binding specificity of the second N-terminal cellulose-binding

domain from Cellulomonas fimi endoglucanase C. Biochemistry 39: 2445-2458.

49.

Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T,

Binns D, Bork P, Burge S, de Castro E, Coggill P, Corbett M, Das U, Daugherty

L, Duquenne L, Finn RD, Fraser M, Gough J, Haft D, Hulo N, Kahn D, Kelly E,

Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J,

McMenamin C, Mi H, Mutowo-Muellenet P, Mulder N, Natale D, Orengo C,

Pesseat S, Punta M, Quinn AF, Rivoire C, Sangrador-Vegas A, Selengut JD,

Sigrist CJ, Scheremetjew M, Tate J, Thimmajanarthanan M, Thomas PD, Wu CH,

Yeats C, Yong SY. 2012. InterPro in 2011: new developments in the family and

domain prediction database. Nucleic Acids Res 40: D306-312.

76

50.

Eyer L, Pantucek R, Zdrahal Z, Konecna H, Kasparek P, Ruzickova V,

Hernychova L, Preisler J, Doskar J. 2007. Structural protein analysis of the

polyvalent staphylococcal bacteriophage 812. Proteomics 7: 64-72.

51.

Habann M, Leiman PG, Vandersteegen K, Van den Bossche A, Lavigne R,

Shneider MM, Bielmann R, Eugster MR, Loessner MJ, Klumpp J. 2014. Listeria

phage A511, a model for the contractile tail machineries of SPO1-related

bacteriophages. Mol Microbiol 92: 84-99.

52.

Ohtsubo Y, Ikeda-Ohtsubo W, Nagata Y, Tsuda M. 2008. GenomeMatcher: a

graphical user interface for DNA sequence comparison. BMC Bioinform 9: 376.

53.

Xia G, Maier L, Sanchez-Carballo P, Li M, Otto M, Holst O, Peschel A. 2010.

Glycosylation of wall teichoic acid in Staphylococcus aureus by TarM. J Biol

Chem 285: 13405-13415.

54.

Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P, Nilsson AS, Ackermann

HW, Kropinski AM. 2009. Classification of Myoviridae bacteriophages using

protein sequence similarity. BMC Microbiol 9: 224-224.

55.

Schwarzer D, Buettner FFR, Browning C, Nazarov S, Rabsch W, Bethe A,

Oberbeck A, Bowman VD, Stummeyer K, Muhlenhoff M, Leiman PG, GerardySchahn R. 2012. A multivalent adsorption apparatus explains the broad host range

of phage phi92: a comprehensive genomic and structural analysis. J Virol 86:

10384-10398.

56.

Golomidova A, Kulikov E, Prokhorov N, Guerrero-Ferreira R, Knirel Y,

Kostryukova E, Tarasyan K, Letarov A. 2016. Branched lateral tail fiber

organization in T5-like bacteriophages DT57C and DT571/2 is revealed by

genetic and functional analysis. Viruses 8: 26-26.

57.

Legrand P, Collins B, Blangy S, Murphy J, Spinelli S, Gutierrez C, Richet N,

Kellenberger C, Desmyter A, Mahony J, van Sinderen D, Cambillau C. 2016. The

atomic structure of the phage Tuc2009 baseplate tripod suggests that host

77

recognition involves two different carbohydrate binding modules. mBio 7:

e01781-01715.

58.

Collins B, Bebeacua C, Mahony J, Blangy S, Douillard FP, Veesler D, Cambillau

C, van Sinderen D. 2013. Structure and functional analysis of the host recognition

device of lactococcal phage Tuc2009. J Virol 87: 8429-8440.

59.

Li X, Gerlach D, Du X, Larsen J, Stegger M, Kühner P, Peschel A, Xia G, Winstel

V. 2015. An accessory wall teichoic acid glycosyltransferase protects

Staphylococcus aureus from the lytic activity of Podoviridae. Sci Rep 5: 1721917219.

60.

Xia G, Corrigan RM, Winstel V, Goerke C, Grundling A, Peschel A. 2011. Wall

teichoic acid-dependent adsorption of staphylococcal siphovirus and myovirus. J

Bacteriol 193: 4006-4009.

61.

Azam AH, Tanji Y. 2019. Peculiarities of Staphylococcus aureus phages and their

possible application in phage therapy. Appl Microbiol Biotechnol 103: 4279-4289.

62.

Uchiyama J, Taniguchi M, Kurokawa K, Takemura-Uchiyama I, Ujihara T,

Shimakura H, Sakaguchi Y, Murakami H, Sakaguchi M, Matsuzaki S. 2017.

Adsorption of Staphylococcus viruses S13' and S24-1 on Staphylococcus aureus

strains with different glycosidic linkage patterns of wall teichoic acids. J Gen Virol

98: 2171-2180.

63.

Lehman SM, Mearns G, Rankin D, Cole RA, Smrekar F, Branston SD, Morales

S. 2019. Design and preclinical development of a phage product for the treatment

of antibiotic-resistant Staphylococcus aureus infections. Viruses 11: 88.

64.

Garcia R, Latz S, Romero J, Higuera G, Garcia K, Bastias R. 2019. Bacteriophage

production models: an overview. Front Microbiol 10: 1187.

65.

Jurač K, Nabergoj D, Podgornik A. 2019. Bacteriophage production processes.

Appl Microbiol Biotechnol 103: 685-694.

66.

Santos SB, Carvalho C, Azeredo J, Ferreira EC. 2014. Population dynamics of a

78

Salmonella lytic phage and its host: implications of the host bacterial growth rate

in modelling. PLoS One 9: e102507.

67.

Mojica KD, Brussaard CP. 2014. Factors affecting virus dynamics and microbial

host-virus interactions in marine environments. FEMS Microbiol Ecol 89: 495515.

68.

Warner CM, Barker N, Lee SW, Perkins EJ. 2014. M13 bacteriophage production

for large-scale applications. Bioprocess Biosyst Eng 37: 2067-2072.

69.

Tokman JI, Kent DJ, Wiedmann M, Denes T. 2016. Temperature significantly

affects the plaquing and adsorption efficiencies of Listeria phages. Front

Microbiol 7: 631.

70.

Anderson B, Rashid MH, Carter C, Pasternack G, Rajanna C, Revazishvili T,

Dean T, Senecal A, Sulakvelidze A. 2011. Enumeration of bacteriophage particles:

comparative analysis of the traditional plaque assay and real-time QPCR- and

nanosight-based assays. Bacteriophage 1: 86-93.

71.

Jones B, Nachtsheim CJ. 2011. A class of three-level designs for definitive

screening in the presence of second-order effects. J Qual Technol 43: 1-15.

72.

Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP. 2009.

Enumeration of bacteriophages by double agar overlay plaque assay. Methods

Mol Biol 501: 69-76.

73.

Green MR, Sambrook J. 2016. Precipitation of DNA with ethanol. Cold Spring

Harb Protoc 2016: 1116-1120.

74.

Green MR, Sambrook J. 2017. Isolation of high-molecular-weight DNA using

organic solvents. Cold Spring Harb Protoc 2017: 356-359.

75.

Takemura-Uchiyama I, Uchiyama J, Kato S, Ujihara T, Daibata M, Matsuzaki S.

2014. Genomic and phylogenetic traits of Staphylococcus phages S25-3 and S254 (family Myoviridae, genus Twort-like viruses). Ann Microbiol 64: 1453-1456.

76.

Errore A, Jones B, Li W, Nachtsheim CJ. 2017. Using definitive screening designs

79

to identify active first-and second-order factor effects. J Qual Technol 49: 244264.

77.

Lindeberger C, Pflug L, Huebner H, Buchholz R. 2012. A novel model for

studying baculovirus infection process. Biotechnol Bioprocess Eng 17: 211-217.

78.

Vicente T, Roldão A, Peixoto C, Carrondo MJ, Alves PM. 2011. Large-scale

production and purification of VLP-based vaccines. J Invertebr Pathol 107 Suppl:

S42-S48.

79.

Postollec F, Falentin H, Pavan S, Combrisson J, Sohier D. 2011. Recent advances

in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol

28: 848-861.

80.

Grieco SH, Wong AY, Dunbar WS, MacGillivray RT, Curtis SB. 2012.

Optimization of fermentation parameters in phage production using response

surface methodology. J Ind Microbiol Biotechnol 39: 1515-1522.

81.

González-Menéndez E, Arroyo-López FN, Martínez B, García P, GarridoFernández A, Rodríguez A. 2018. Optimizing propagation of Staphylococcus

aureus infecting bacteriophage vB_sauM-phiIPLA-RODI on Staphylococcus

xylosus using response surface methodology. Viruses 10: 153.

82.

Agboluaje M, Sauvageau D. 2018. Bacteriophage production in bioreactors.

Methods Mol Biol 1693: 173-193.

83.

Ali J, Rafiq Q, Ratcliffe E. 2019. A scaled-down model for the translation of

bacteriophage culture to manufacturing scale. Biotechnol Bioeng 116: 972-984.

84.

Jones B, Nachtsheim CJ. 2017. Effective design-based model selection for

definitive screening designs. Technometrics 59: 319-329.

85.

Baneyx F, Mujacic M. 2004. Recombinant protein folding and misfolding in

Escherichia coli. Nat Biotechnol 22: 1399-1408.

86.

Gerba CP, Betancourt WQ. 2017. Viral aggregation: impact on virus behavior in

the environment. Environ Sci Technol 51: 7318-7325.

80

87.

Tai M, Ly A, Leung I, Nayar G. 2015. Efficient high-throughput biological process

characterization: definitive screening design with the ambr250 bioreactor system.

Biotechnol Prog 31: 1388-1395.

88.

Hocharoen L, Noppiboon S, Kitsubun P. 2020. Process characterization by

definitive screening design approach on DNA vaccine production. Front Bioeng

Biotechnol 15: 574809.

89.

Bourdin G, Schmitt B, Marvin Guy L, Germond JE, Zuber S, Michot L, Reuteler

G, Brussow H. 2014. Amplification and purification of T4-like escherichia coli

phages for phage therapy: from laboratory to pilot scale. Appl Environ Microbiol

80: 1469-1476.

90.

Smrekar F, Ciringer M, Jančar J, Raspor P, Štrancar A, Podgornik A. 2011.

Optimization of lytic phage manufacturing in bioreactor using monolithic

supports. J Sep Sci 34: 2152-2158.

91.

Malik DJ, Sokolov IJ, Vinner GK, Mancuso F, Cinquerrui S, Vladisavljevic GT,

Clokie MRJ, Garton NJ, Stapley AGF, Kirpichnikova A. 2017. Formulation,

stabilisation and encapsulation of bacteriophage for phage therapy. Adv Colloid

Interface Sci 249: 100-133.

81

APPENDIX

General features of all putative ORFs from ΦSA012

ORF

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

bp

start

14

543

716

1067

1817

2251

2445

2927

3351

3907

4407

4875

5588

7552

9008

9230

9425

10152

10570

10961

11232

11755

12347

12880

13047

13328

14173

15303

15782

16191

16626

16814

17019

19067

19408

19598

20183

20802

21691

21915

22724

23390

23831

24012

24676

24896

25126

25927

26918

27226

28826

29329

29599

30269

31870

32557

32902

33241

33801

34045

34320

34745

36576

stop

484

716

982

1246

1581

1817

2254

2442

2920

3365

3919

4468

4878

5684

8460

9012

9231

9415

10331

10572

11059

11273

11805

12347

12883

13050

13328

14185

15456

15775

16324

16626

16858

17019

19145

19425

19605

20176

20795

21691

21984

22776

23406

23821

24035

24666

24899

25235

26124

26918

27339

28826

29414

29787

31652

32348

32570

32915

34067

34323

34730

36562

37376

Length

(aa)

156

57

88

59

78

144

63

161

143

180

162

135

236

622

182

72

64

245

79

129

57

160

180

177

54

92

281

372

108

138

100

62

53

682

87

57

192

208

298

74

246

204

141

63

213

76

75

230

264

102

495

167

61

160

72

69

110

108

88

92

136

605

266

predicted function

terminal repeat-encoded protein

terminal repeat-encoded protein

terminal repeat-encoded protein

terminal repeat-encoded protein

border ORF L protein,unknown function

N/A

putative membrane protein

membrane protein

N/A

N/A

N/A

N/A

serine/threonine protein phosphatase

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

putative membrane protein

putative membrane protein

N/A

AAA family ATPase

N/A

N/A

DNA binding protein

N/A

N/A

N/A

virion component

N/A

membrane protein

N/A

putative DNA ligase

putative membrane protein

PhoH-related protein

virion component

N/A

N/A

N/A

N/A

N/A

putative transglycosylase

putative membrane protein

putative membrane protein

N-acetylmuramoyl-L-alanine amidase

putative holin

N/A

HNH endonuclease

N/A

virion component

N/A

putative membrane protein

putative membrane protein

N/A

N/A

Terminase

virion component

82

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

37363

37533

38105

39509

39716

40091

41976

42768

43840

45323

45566

46488

47366

48005

48843

49085

50921

51459

52496

52644

52824

53289

53554

53997

54490

55091

59225

61665

62638

62888

64193

66845

67636

68160

68879

69946

73116

73658

77165

77324

79268

79646

81112

82872

84478

85999

87024

87401

89320

89931

91064

91402

91841

92466

92873

95001

96068

96381

96908

97514

97896

101184

101443

102012

103497

104648

105917

106257

107046

107701

108228

37536

38012

39271

39697

40087

41782

42749

43724

45231

45553

46474

47366

47986

48841

49058

50848

51349

52430

52654

52781

53276

53483

53865

54455

55035

59146

61651

62552

62898

63997

66739

67636

68160

68864

69925

73005

73637

77116

77323

79246

79639

81022

82860

84485

85920

87024

87401

89320

89916

90998

91402

91854

92449

92858

94987

96050

96397

96701

97504

97819

101114

101426

101925

103283

104477

105913

106270

106919

107678

108213

108455

57

159

388

62

123

563

257

318

463

76

302

292

206

278

71

587

142

323

52

45

150

64

103

152

181

1351

808

295

86

369

848

263

174

234

348

1019

173

1152

52

640

123

458

582

537

480

341

125

639

198

355

112

150

202

130

704

349

109

106

198

101

1072

80

160

423

326

421

117

220

210

170

75

N/A

N/A

putative membrane protein

putative membrane protein

N/A

putative portal protein

putative prohead protease

N/A

putative capsid protein

hypothetical protein

putative tail fiber protein

virion component

N/A

baseplate hub assembly protein

N/A

putative major tail sheath protein

putative tail tube protein

putative intron-encoded nuclease

N/A

N/A

N/A

putative membrane protein

virion component

N/A

tail morphogenetic protein

tail morphogenetic protein, tape masure protein

tail morphogenetic protein

tail morphogenetic protein, putative peptideglycan hydrolase

N/A

mobile element protein

putative glycerophosphoryl diester phosphodiesterase

virion component

virion component

putative baseplate protein

putative baseplate protein

tail morphogenetic protein

putative baseplate protein

tail morphogenetic protein (siliadase domain), putative adsorption associated tail protein

N/A

virion component

virion component

virion component

DNA helicase

putative Rep protein

DNA helicase

putative exonuclease

N/A

putative exonuclease

anti- sigma factor

DNA primase

N/A

N/A

N/A

ribonucleotide reduction protein NrdI

ribonucleotide reductase large subunit

ribonucleotide reductase minor subunit

N/A

thioredoxin-like protein

N/A

transcription factor

DNA polymerase I

N/A

N/A

N/A

N/A

putative DNA repair protein

N/A

RNA polymerase sigma factor

putative tail morphogenetic protein

putative tail morphogenetic protein (Ig-like domain)

putative tail morphogenetic protein

83

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

108550

108814

109562

110826

111181

111556

112085

112830

113276

114511

115260

115783

116243

117009

117555

117802

118395

118564

118805

119119

119778

120038

120207

120551

120746

121130

121477

121825

122145

122495

123111

123517

123920

124230

124637

125046

125279

125787

126107

126850

127168

127926

128100

128337

128538

128922

129227

130153

131701

131963

132357

132619

132919

133236

133535

133923

134187

135240

135530

135823

136113

136400

136700

137030

137286

137742

138892

139202

139717

140054

141088

108810

109569

110812

111194

111492

112092

112852

113276

114139

115242

115718

116226

116947

117407

117797

118359

118571

118812

119038

119763

120026

120214

120503

120733

121117

121477

121755

122130

122495

123097

123290

123918

124213

124517

125041

125282

125806

126107

126337

127167

127848

128084

128324

128537

128828

129230

130135

131622

131946

132355

132554

132915

133230

133535

133774

134168

134573

135533

135715

136113

136400

136696

136948

137275

137633

138350

138554

139510

140004

140245

141411

86

251

416

122

103

178

255

148

287

243

152

147

234

132

80

185

58

82

77

214

82

58

98

60

123

115

92

101

116

200

59

133

97

95

134

78

175

106

76

105

226

52

74

66

96

102

302

489

81

130

65

98

103

99

79

81

128

97

61

96

95

98

82

81

115

202

112

102

95

63

107

N/A

N/A

putative metallophosphoesterase

putative membrane protein

N/A

N/A

N/A

N/A

N/A

N/A

virion component

N/A

N/A

putative membrane protein

N/A

N/A

DNA sliding clump inhibitor,arrest of S.aureus DNA synthesis

hypothetical protein

hypothetical protein

putative membrane protein

putative membrane protein

N/A

N/A

putative membrane protein

N/A

N/A

putative membrane protein

N/A

N/A

N/A

N/A

putative membrane protein

N/A

putative membrane protein

N/A

N/A

phosphoesterase

N/A

N/A

N/A

virion component

putative membrane protein

N/A

N/A

putative membrane protein

N/A

putative ribose-phosphate pyrophosphokinase

nicotinamide phosphoribosyl transferase

N/A

N/A

N/A

terminal repeat-encoded protein

N/A

N/A

N/A

N/A

N/A

terminal repeat-encoded protein

terminal repeat-encoded protein

terminal repeat-encoded protein

terminal repeat-encoded protein

terminal repeat-encoded protein

terminal repeat-encoded protein

terminal repeat-encoded protein

terminal repeat-encoded protein

terminal repeat-encoded protein

terminal repeat-encoded protein

terminal repeat-encoded protein

terminal repeat-encoded protein

terminal repeat-encoded protein

terminal repeat-encoded protein

84

206

207

141486

141694

141623

141858

45

54

N/A

N/A

85

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る