リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Liquid Droplet Formation and Facile Cytosolic Translocation of IgG in the Presence of Attenuated Cationic Amphiphilic Lytic Peptides」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Liquid Droplet Formation and Facile Cytosolic Translocation of IgG in the Presence of Attenuated Cationic Amphiphilic Lytic Peptides

Iwata, Takahiro Hirose, Hisaaki Sakamoto, Kentarou Hirai, Yusuke Arafiles, Jan Vincent V. Akishiba, Misao Imanishi, Miki Futaki, Shiroh 京都大学 DOI:10.1002/anie.202105527

2021.09

概要

Fc region binding peptide conjugated with attenuated cationic amphiphilic lytic peptide L17E trimer [FcB(L17E)₃] was designed for immunoglobulin G (IgG) delivery into cells. Particle-like liquid droplets were generated by mixing Alexa Fluor 488 labeled IgG (Alexa488-IgG) with FcB(L17E)₃. Droplet contact with the cellular membrane led to spontaneous influx and distribution of Alexa488-IgG throughout cells in serum containing medium. Involvement of cellular machinery accompanied by actin polymerization and membrane ruffling was suggested for the translocation. Alexa488-IgG negative charges were crucial in liquid droplet formation with positively charged FcB(L17E)₃. Binding of IgG to FcB(L17E)₃ may not be necessary. Successful intracellular delivery of Alexa Fluor 594-labeled anti-nuclear pore complex antibody and anti-mCherry-nanobody tagged with supernegatively charged green fluorescence protein allowed binding to cellular targets in the presence of FcB(L17E)₃.

この論文で使われている画像

参考文献

cited therein.

[4]

a) M. Akishiba, T. Takeuchi, Y. Kawaguchi, K. Sakamoto, H. H. Yu, I. Nakase, T.

Takatani-Nakase, F. Madani, A. Gräslund, S. Futaki, Nat. Chem. 2017, 9, 751-761; b) M.

Akishiba, S. Futaki, Mol. Pharm. 2019, 16, 2540-2548; c) N. Tamemoto, M. Akishiba, K.

34

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Sakamoto, K. Kawano, H. Noguchi, S. Futaki, Mol. Pharm. 2020; d) K. Sakamoto, M.

Akishiba, T. Iwata, K. Murata, S. Mizuno, K. Kawano, M. Imanishi, F. Sugiyama, S.

Futaki, Angew. Chem. Int. Ed. Engl. 2020; e) Y. Nomura, K. Sakamoto, M. Akishiba, T.

Iwata, H. Hirose, S. Futaki, Bioorg. Med. Chem. Lett. 2020, 30, 127362; f) H.-H. Yu, K.

Sakamoto, M. Akishiba, N. Tamemoto, H. Hirose, I. Nakase, M. Imanishi, F. Madani, A.

Gräslund, S. Futaki, Peptide Science 2020, 112, e24144; g) K. Sakamoto, M. Akishiba, T.

Iwata, J. V. V. Arafiles, M. Imanishi, S. Futaki, Bioorg. Med. Chem. Lett. 2021, 40,

127925; h) S. Futaki, J. V. V. Arafiles, H. Hirose, Chemistry Letters 2020, 49, 1088-1094.

[5]

L. Yan, M. E. Adams, J. Biol. Chem. 1998, 273, 2059-2066.

[6]

a) E. N. Lorenzon, J. P. Piccoli, N. A. Santos-Filho, E. M. Cilli, Protein Pept. Lett. 2019,

26, 98-107; b) W. Y. Hsu, T. Masuda, S. Afonin, T. Sakai, J. V. V. Arafiles, K. Kawano,

H. Hirose, M. Imanishi, A. S. Ulrich, S. Futaki, Bioorg Med Chem Lett 2020, 30, 127190;

c) C. Díaz-Perlas, B. Oller-Salvia, M. Sánchez-Navarro, M. Teixidó, E. Giralt, Chem. Sci.

2018, 9, 8409-8415; d) D. J. Brock, L. Kustigian, M. Jiang, K. Graham, T. Y. Wang, A.

Erazo-Oliveras, K. Najjar, J. Zhang, H. Rye, J. P. Pellois, Traffic 2018, 19, 421-435.

[7]

H. Yang, P. V. Gurgel, R. G. Carbonell, J. Pept. Res. 2005, 66, 120-137.

[8]

K. Yamada, Y. Ito, ChemBioChem 2019, 20, 2729-2737.

[9]

S. Futaki, K. Kitagawa, Tetrahedron Lett. 1994, 35, 1267-1270.

[10]

M. Ishiyama, Y. Miyazono, K. Sasamoto, Y. Ohkura, K. Ueno, Talanta 1997, 44, 12991305.

[11]

J. Riedl, A. H. Crevenna, K. Kessenbrock, J. H. Yu, D. Neukirchen, M. Bista, F. Bradke,

D. Jenne, T. A. Holak, Z. Werb, M. Sixt, R. Wedlich-Soldner, Nat. Methods 2008, 5, 605607.

[12]

A. J. Ridley, BioEssays 1994, 16, 321-327.

[13]

L. A. Selden, L. C. Gershman, J. E. Estes, Biochem. Biophys. Res. Commun. 1980, 95,

1854-1860.

[14]

O. Meier, K. Boucke, S. V. Hammer, S. Keller, R. P. Stidwill, S. Hemmi, U. F. Greber, J.

Cell Biol. 2002, 158, 1119-1131.

[15]

N. Araki, M. T. Johnson, J. A. Swanson, J. Cell Biol. 1996, 135, 1249-1260.

[16]

a) N. R. Johnson, Y. Wang, Expert Opin. Drug Deliv. 2014, 11, 1829-1832; b) L. Zhou,

H. Shi, Z. Li, C. He, Macromol. Rapid Commun. 2020, 41, e2000149; c) S. Muniyandy,

T. Sathasivam, A. K. Veeramachineni, P. Janarthanan, Polymers 2015, 7, 1088-1105; d)

G. O. S. Huei, S. Muniyandy, T. Sathasivam, A. K. Veeramachineni, P. Janarthanan,

Chemical Papers 2016, 70, 243-252.

[17]

S. Boeynaems, S. Alberti, N. L. Fawzi, T. Mittag, M. Polymenidou, F. Rousseau, J.

Schymkowitz, J. Shorter, B. Wolozin, L. Van Den Bosch, P. Tompa, M. Fuxreiter, Trends

35

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Cell Biol. 2018, 28, 420-435.

[18]

Y. Shin, J. Berry, N. Pannucci, M. P. Haataja, J. E. Toettcher, C. P. Brangwynne, Cell

2017, 168, 159-171.e114.

[19]

a) T. P. Dao, R. M. Kolaitis, H. J. Kim, K. O'Donovan, B. Martyniak, E. Colicino, H.

Hehnly, J. P. Taylor, C. A. Castañeda, Mol. Cell 2018, 69, 965-978.e966; b) T. J. Nott, E.

Petsalaki, P. Farber, D. Jervis, E. Fussner, A. Plochowietz, T. D. Craggs, D. P. BazettJones, T. Pawson, J. D. Forman-Kay, A. J. Baldwin, Mol. Cell 2015, 57, 936-947; c) Y.

Lin, E. Mori, M. Kato, S. Xiang, L. Wu, I. Kwon, S. L. McKnight, Cell 2016, 167, 789802.E12.

[20]

D. Priftis, M. Tirrell, Soft Matter 2012, 8, 9396-9405.

[21]

N. O. Taylor, M. T. Wei, H. A. Stone, C. P. Brangwynne, Biophys. J. 2019, 117, 12851300.

[22]

M. S. Lawrence, K. J. Phillips, D. R. Liu, J. Am. Chem. Soc. 2007, 129, 10110-10112.

[23]

D. Kalderon, B. L. Roberts, W. D. Richardson, A. E. Smith, Cell 1984, 39, 499-509.

[24]

J. V. V. Arafiles, H. Hirose, Y. Hirai, M. Kuriyama, M. M. Sakyiamah, W. Nomura, K.

Sonomura, M. Imanishi, A. Otaka, H. Tamamura, S. Futaki, Angew. Chem. Int. Ed. Engl.

60, 11928-11936.

[25]

T. T. Yang, L. Cheng, S. R. Kain, Nucleic Acids Res. 1996, 24, 4592-4593.

[26]

C. Strambio-De-Castillia, M. Niepel, M. P. Rout, Nat. Rev. Mol. Cell Biol. 2010, 11, 490501.

[27]

Y. Katoh, M. Terada, Y. Nishijima, R. Takei, S. Nozaki, H. Hamada, K. Nakayama, J.

Biol. Chem. 2016, 291, 10962-10975.

[28]

E. Beghein, J. Gettemans, Front. Immunol. 2017, 8, 771.

36

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Table of contents

Fc region binding peptide conjugated with attenuated lytic peptide L17E trimer

[FcB(L17E)3] was designed for intracellular delivery of IgG. Liquid droplets were formed

by mixing Alexa Fluor 488 labeled IgG (Alexa488-IgG) with FcB(L17E)3. Droplet

contact with cell membrane led to quick influx of Alexa488-IgG throughout cells.

Successful delivery of functional proteins into cells allowed binding to subcellular targets

in the presence of FcB(L17E)3.

37

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る