リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「5-aminolaevulinic acid (5-ALA) accumulates in GIST-T1 cells and photodynamic diagnosis using 5-ALA identifies gastrointestinal stromal tumors (GISTs) in xenograft tumor models<Abstract of dissertation>」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

5-aminolaevulinic acid (5-ALA) accumulates in GIST-T1 cells and photodynamic diagnosis using 5-ALA identifies gastrointestinal stromal tumors (GISTs) in xenograft tumor models

Makiko Sasaki 0000-0002-4196-7766 佐々木 槙子 名古屋市立大学

2022.03.24

概要

Gastrointestinal stromal tumors (GISTs) are the most common submucosal tumors of the gastrointestinal tract observed in clinical practice, with a population prevalence of 14–20 cases per million. GIST diagnosis using conventional gastrointestinal endoscopy is difficult because such malignancies cannot be distinguished from other types of submucosal tumors. Photodynamic diagnosis (PDD) is based on the preferential uptake of photosensitizers by tumor tissues and its detection by fluorescence emission upon laser excitation. In this study, we investigated whether PDD using 5-aminolevulinic acid (5-ALA), a standard photosensitizer used worldwide, could be used for GIST diagnosis. 5-ALA is metabolized to endogenous fluorescent protoporphyrin IX (PpIX). We examined the accumulation of PpIX in GIST-T1 cells using flow cytometry and immunofluorescent staining. Furthermore, we established GIST-T1 xenograft mouse models and examined PpIX accumulation in the resultant tumors. PpIX accumulated in GIST-T1 cells and was localized mainly to lysosomes. PpIX accumulation was also observed in murine xenograft tumors. Moreover, tumor and normal tissues could be distinctly identified by relative PpIX fluorescence. Thus, our results demonstrated that PDD with 5-ALA has substantial clinical potential for GIST diagnosis.

参考文献

Hwang JH, Kimmey MB. The incidental upper gastrointestinal subepithelial mass. Gastroenterology. 2004;126(1):301–7. Epub 2003/12/31. 10.1053/j.gastro.2003.11.040

Joensuu H, Hohenberger P, Corless CL. Gastrointestinal stromal tumour. Lancet. 2013;382(9896):973–83. Epub 2013/04/30. 10.1016/S0140-6736(13)60106-3

Joensuu H, Vehtari A, Riihimäki J, Nishida T, Steigen SE, Brabec P, et al.. Risk of recurrence of gastrointestinal stromal tumour after surgery: an analysis of pooled population-based cohorts. Lancet Oncol. 2012;13(3):265–74. Epub 2011/12/14. 10.1016/S1470-2045(11)70299-6

Ahmed M. Recent advances in the management of gastrointestinal stromal tumor. World J Clin Cases. 2020;8(15):3142–55. Epub 2020/09/03. 10.12998/wjcc.v8.i15.3142

Akahoshi K, Oya M, Koga T, Shiratsuchi Y. Current clinical management of gastrointestinal stromal tumor. World J Gastroenterol. 2018;24(26):2806–17. Epub 2018/07/19. 10.3748/wjg.v24.i26.2806

Crow P, Stone N, Kendall CA, Persad RA, Wright MP. Optical diagnostics in urology: current applications and future prospects. BJU Int. 2003;92(4):400–7. Epub 2003/08/22. 10.1046/j.1464-410x.2003.04368.x

Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392–401. Epub 2006/05/02. 10.1016/S1470-2045(06)70665-9

Motoori M, Yano M, Tanaka K, Kishi K, Takahashi H, Inoue M, et al.. Intraoperative photodynamic diagnosis of lymph node metastasis in esophageal cancer patients using 5-aminolevulinic acid. Oncol Lett. 2015;10(5):3035–9. Epub 2016/01/02. 10.3892/ol.2015.3685

Denzinger S, Burger M, Walter B, Knuechel R, Roessler W, Wieland WF, et al.. Clinically relevant reduction in risk of recurrence of superficial bladder cancer using 5-aminolevulinic acid-induced fluorescence diagnosis: 8-year results of prospective randomized study. Urology. 2007;69(4):675–9. Epub 2007/04/21. 10.1016/j.urology.2006.12.023

Namikawa T, Yatabe T, Inoue K, Shuin T, Hanazaki K. Clinical applications of 5-aminolevulinic acid-mediated fluorescence for gastric cancer. World J Gastroenterol. 2015;21(29):8769–75. Epub 2015/08/14. 10.3748/wjg.v21.i29.8769

Regula J, MacRobert AJ, Gorchein A, Buonaccorsi GA, Thorpe SM, Spencer GM, et al.. Photosensitisation and photodynamic therapy of oesophageal, duodenal, and colorectal tumours using 5 aminolaevulinic acid induced protoporphyrin IX—a pilot study. Gut. 1995;36(1):67–75. Epub 1995/01/01. 10.1136/gut.36.1.67

Yang X, Palasuberniam P, Kraus D, Chen B. Aminolevulinic Acid-Based Tumor Detection and Therapy: Molecular Mechanisms and Strategies for Enhancement. Int J Mol Sci. 2015;16(10):25865–80. Epub 2015/10/31. 10.3390/ijms161025865

Teng L, Nakada M, Zhao SG, Endo Y, Furuyama N, Nambu E, et al.. Silencing of ferrochelatase enhances 5-aminolevulinic acid-based fluorescence and photodynamic therapy efficacy. Br J Cancer. 2011;104(5):798–807. Epub 2011/02/10. 10.1038/bjc.2011.12

Inoue Y, Tanaka R, Komeda K, Hirokawa F, Hayashi M, Uchiyama K. Fluorescence detection of malignant liver tumors using 5-aminolevulinic acid-mediated photodynamic diagnosis: principles, technique, and clinical experience. World J Surg. 2014;38(7):1786–94. Epub 2014/02/05. 10.1007/s00268-014-2463-9

Kurumi H, Kanda T, Kawaguchi K, Yashima K, Koda H, Ogihara K, et al.. Protoporphyrinogen oxidase is involved in the fluorescence intensity of 5-aminolevulinic acid-mediated laser-based photodynamic endoscopic diagnosis for early gastric cancer. Photodiagnosis Photodyn Ther. 2018;22:79–85. Epub 2018/02/10. 10.1016/j.pdpdt.2018.02.005

Inoue K. 5-Aminolevulinic acid-mediated photodynamic therapy for bladder cancer. Int J Urol. 2017;24(2):97–101. Epub 2017/02/14. 10.1111/iju.13291

Kondo Y, Murayama Y, Konishi H, Morimura R, Komatsu S, Shiozaki A, et al.. Fluorescent detection of peritoneal metastasis in human colorectal cancer using 5-aminolevulinic acid. Int J Oncol. 2014;45(1):41–6. Epub 2014/05/14. 10.3892/ijo.2014.2417

Hinnen P, de Rooij FW, van Velthuysen ML, Edixhoven A, van Hillegersberg R, Tilanus HW, et al.. Biochemical basis of 5-aminolaevulinic acid-induced protoporphyrin IX accumulation: a study in patients with (pre)malignant lesions of the oesophagus. Br J Cancer. 1998;78(5):679–82. Epub 1998/09/23. 10.1038/bjc.1998.559

Rodriguez L, Batlle A, Di Venosa G, MacRobert AJ, Battah S, Daniel H, et al.. Study of the mechanisms of uptake of 5-aminolevulinic acid derivatives by PEPT1 and PEPT2 transporters as a tool to improve photodynamic therapy of tumours. Int J Biochem Cell Biol. 2006;38(9):1530–9. Epub 2006/04/25. 10.1016/j.biocel.2006.03.002

Yonemura Y, Endo Y, Canbay E, Liu Y, Ishibashi H, Mizumoto A, et al.. Photodynamic Detection of Peritoneal Metastases Using 5-Aminolevulinic Acid (ALA). Cancers (Basel). 2017;9(3). Epub 2017/03/04. 10.3390/cancers9030023

El-Khatib M, Tepe C, Senger B, Dibué-Adjei M, Riemenschneider MJ, Stummer W, et al.. Aminolevulinic acid-mediated photodynamic therapy of human meningioma: an in vitro study on primary cell lines. Int J Mol Sci. 2015;16(5):9936–48. Epub 2015/05/06. 10.3390/ijms16059936

Kim CH, Chung CW, Choi KH, Yoo JJ, Kim DH, Jeong YI, et al.. Effect of 5-aminolevulinic acid-based photodynamic therapy via reactive oxygen species in human cholangiocarcinoma cells. Int J Nanomedicine. 2011;6:1357–63. Epub 2011/07/16. 10.2147/IJN.S21395

Hino H, Murayama Y, Nakanishi M, Inoue K, Nakajima M, Otsuji E. 5-Aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes of different wavelengths in a mouse model of peritoneally disseminated gastric cancer. J Surg Res. 2013;185(1):119–26. Epub 2013/06/12. 10.1016/j.jss.2013.05.048

Mohammadi Z, Sazgarnia A, Rajabi O, Soudmand S, Esmaily H, Sadeghi HR. An in vitro study on the photosensitivity of 5-aminolevulinic acid conjugated gold nanoparticles. Photodiagnosis Photodyn Ther. 2013;10(4):382–8. Epub 2013/11/29. 10.1016/j.pdpdt.2013.03.010

Sailer R, Strauss WS, Wagner M, Emmert H, Schneckenburger H. Relation between intracellular location and photodynamic efficacy of 5-aminolevulinic acid-induced protoporphyrin IX in vitro. Comparison between human glioblastoma cells and other cancer cell lines. Photochem Photobiol Sci. 2007;6(2):145–51. Epub 2007/02/06. 10.1039/b611715e

Ohgari Y, Miyata Y, Miyagi T, Gotoh S, Ohta T, Kataoka T, et al.. Roles of porphyrin and iron metabolisms in the δ-aminolevulinic acid (ALA)-induced accumulation of protoporphyrin and photodamage of tumor cells. Photochem Photobiol. 2011;87(5):1138–45. Epub 2011/06/15. 10.1111/j.1751-1097.2011.00950.x

Zakaria S, Gamal-Eldeen AM, El-Daly SM, Saleh S. Synergistic apoptotic effect of Doxil ® and aminolevulinic acid-based photodynamic therapy on human breast adenocarcinoma cells. Photodiagnosis Photodyn Ther. 2014;11(2):227–38. Epub 2014/03/19. 10.1016/j.pdpdt.2014.03.001

Hirano T, Hagiya Y, Fukuhara H, Inoue K, Shuin T, Matsumoto K, et al.. Improvement of aminolevulinic acid (ALA)-mediated photodynamic diagnosis using n-propyl gallate. Photodiagnosis Photodyn Ther. 2013;10(1):28–32. Epub 2013/03/08. 10.1016/j.pdpdt.2012.06.002

Kobuchi H, Moriya K, Ogino T, Fujita H, Inoue K, Shuin T, et al.. Mitochondrial localization of ABC transporter ABCG2 and its function in 5-aminolevulinic acid-mediated protoporphyrin IX accumulation. PLoS One. 2012;7(11):e50082. Epub 2012/11/29. 10.1371/journal.pone.0050082

Datta SN, Loh CS, MacRobert AJ, Whatley SD, Matthews PN. Quantitative studies of the kinetics of 5-aminolaevulinic acid-induced fluorescence in bladder transitional cell carcinoma. Br J Cancer. 1998;78(8):1113–8. Epub 1998/10/29. 10.1038/bjc.1998.637

Yamamoto M, Fujita H, Katase N, Inoue K, Nagatsuka H, Utsumi K, et al.. Improvement of the efficacy of 5-aminolevulinic acid-mediated photodynamic treatment in human oral squamous cell carcinoma HSC-4. Acta Med Okayama. 2013;67(3):153–64. Epub 2013/06/28. 10.18926/AMO/50408

Suzuki C, Tsuji AB, Kato K, Kikuchi T, Sudo H, Okada M, et al.. Preclinical characterization of 5-amino-4-oxo-[6-11C]hexanoic acid as an imaging probe to estimate protoporphyrin IX accumulation induced by exogenous aminolevulinic acid. J Nucl Med. 2014;55(10):1671–7. Epub 2014/08/16. 10.2967/jnumed.114.145086

Chen X, Zhao P, Chen F, Li L, Luo R. Effect and mechanism of 5-aminolevulinic acid-mediated photodynamic therapy in esophageal cancer. Lasers Med Sci. 2011;26(1):69–78. Epub 2010/08/03. 10.1007/s10103-010-0810-0

White B, Rossi V, Baugher PJ. Aminolevulinic Acid-Mediated Photodynamic Therapy Causes Cell Death in MG-63 Human Osteosarcoma Cells. Photomed Laser Surg. 2016;34(9):400–5. Epub 2016/08/09. 10.1089/pho.2016.4091

Rud E, Gederaas O, Høgset A, Berg K. 5-aminolevulinic acid, but not 5-aminolevulinic acid esters, is transported into adenocarcinoma cells by system BETA transporters. Photochem Photobiol. 2000;71(5):640–7. Epub 2000/05/20. 10.1562/0031-8655(2000)071&lt;0640:aabnaa&gt;2.0.co;2

Kitajima Y, Ishii T, Kohda T, Ishizuka M, Yamazaki K, Nishimura Y, et al.. Mechanistic study of PpIX accumulation using the JFCR39 cell panel revealed a role for dynamin 2-mediated exocytosis. Sci Rep. 2019;9(1):8666. Epub 2019/06/19. 10.1038/s41598-019-44981-y

Fujimoto S, Muguruma N, Okamoto K, Kurihara T, Sato Y, Miyamoto Y, et al.. A Novel Theranostic Combination of Near-infrared Fluorescence Imaging and Laser Irradiation Targeting c-KIT for Gastrointestinal Stromal Tumors. Theranostics. 2018;8(9):2313–28. Epub 2018/05/04. 10.7150/thno.22027

Tanaka M, Kataoka H, Yano S, Ohi H, Moriwaki K, Akashi H, et al.. Antitumor effects in gastrointestinal stromal tumors using photodynamic therapy with a novel glucose-conjugated chlorin. Mol Cancer Ther. 2014;13(4):767–75. Epub 2014/02/21. 10.1158/1535-7163.MCT-13-0393

Tanaka M, Kataoka H, Mabuchi M, Sakuma S, Takahashi S, Tujii R, et al.. Anticancer effects of novel photodynamic therapy with glycoconjugated chlorin for gastric and colon cancer. Anticancer Res. 2011;31(3):763–9. Epub 2011/04/19. .

Kaneko S, Kaneko S. Fluorescence-Guided Resection of Malignant Glioma with 5-ALA. Int J Biomed Imaging. 2016;2016:6135293. Epub 2016/07/19. 10.1155/2016/6135293

Suzuki T, Wada S, Eguchi H, Adachi J, Mishima K, Matsutani M, et al.. Cadherin 13 overexpression as an important factor related to the absence of tumor fluorescence in 5-aminolevulinic acid-guided resection of glioma. J Neurosurg. 2013;119(5):1331–9. Epub 2013/09/10. 10.3171/2013.7.JNS122340

Tipirneni KE, Rosenthal EL, Moore LS, Haskins AD, Udayakumar N, Jani AH, et al.. Fluorescence Imaging for Cancer Screening and Surveillance. Mol Imaging Biol. 2017;19(5):645–55. Epub 2017/02/06. 10.1007/s11307-017-1050-5

Gèze M, Morlière P, Mazière JC, Smith KM, Santus R. Lysosomes, a key target of hydrophobic photosensitizers proposed for photochemotherapeutic applications. J Photochem Photobiol B. 1993;20(1):23–35. Epub 1993/09/01. 10.1016/1011-1344(93)80128-v

Hamblin MR, Miller JL, Rizvi I, Ortel B, Maytin EV, Hasan T. Pegylation of a chlorin(e6) polymer conjugate increases tumor targeting of photosensitizer. Cancer Res. 2001;61(19):7155–62. Epub 2001/10/05. .

Schwartz L, Supuran CT, Alfarouk KO. The Warburg Effect and the Hallmarks of Cancer. Anticancer Agents Med Chem. 2017;17(2):164–70. Epub 2016/11/03. 10.2174/1871520616666161031143301

Namikawa T, Fujisawa K, Munekage E, Iwabu J, Uemura S, Tsujii S, et al.. Clinical application of photodynamic medicine technology using light-emitting fluorescence imaging based on a specialized luminous source. Med Mol Morphol. 2018;51(4):187–93. Epub 2018/04/06. 10.1007/s00795-018-0190-2

Inoue K, Fukuhara H, Shimamoto T, Kamada M, Iiyama T, Miyamura M, et al.. Comparison between intravesical and oral administration of 5-aminolevulinic acid in the clinical benefit of photodynamic diagnosis for nonmuscle invasive bladder cancer. Cancer. 2012;118(4):1062–74. Epub 2011/07/21. 10.1002/cncr.26378

Nishie H, Kataoka H, Yano S, Kikuchi JI, Hayashi N, Narumi A, et al.. A next-generation bifunctional photosensitizer with improved water-solubility for photodynamic therapy and diagnosis. Oncotarget. 2016;7(45):74259–68. Epub 2016/10/07. 10.18632/oncotarget.12366

Buytaert E, Callewaert G, Hendrickx N, Scorrano L, Hartmann D, Missiaen L, et al.. Role of endoplasmic reticulum depletion and multidomain proapoptotic BAX and BAK proteins in shaping cell death after hypericin-mediated photodynamic therapy. Faseb j. 2006;20(6):756–8. Epub 2006/02/04. 10.1096/fj.05-4305fje

Ali-Seyed M, Bhuvaneswari R, Soo KC, Olivo M. Photolon™—photosensitization induces apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes. Int J Oncol. 2011;39(4):821–31. Epub 2011/07/05. 10.3892/ijo.2011.1109

Li PX, Mu JH, Xiao HL, Li DH. Antitumor effect of photodynamic therapy with a novel targeted photosensitizer on cervical carcinoma. Oncol Rep. 2015;33(1):125–32. Epub 2014/11/08. 10.3892/or.2014.3593

Chen JY, Cheung NH, Fung MC, Wen JM, Leung WN, Mak NK. Subcellular localization of merocyanine 540 (MC540) and induction of apoptosis in murine myeloid leukemia cells. Photochem Photobiol. 2000;72(1):114–20. Epub 2000/07/27. 10.1562/0031-8655(2000)072&lt;0114:slomma&gt;2.0.co;2

Kushibiki T, Noji T, Ebihara Y, Hontani K, Ono M, Kuwabara S, et al.. 5-Aminolevulinic-acid-mediated Photodynamic Diagnosis Enhances the Detection of Peritoneal Metastases in Biliary Tract Cancer in Mice. In Vivo. 2017;31(5):905–8. Epub 2017/09/09. 10.21873/invivo.11145

Nakamura M, Nishikawa J, Hamabe K, Goto A, Nishimura J, Shibata H, et al.. Preliminary study of photodynamic diagnosis using 5-aminolevulinic acid in gastric and colorectal tumors. World J Gastroenterol. 2015;21(21):6706–12. Epub 2015/06/16. 10.3748/wjg.v21.i21.6706

Kawai N, Hirohashi Y, Ebihara Y, Saito T, Murai A, Saito T, et al.. ABCG2 expression is related to low 5-ALA photodynamic diagnosis (PDD) efficacy and cancer stem cell phenotype, and suppression of ABCG2 improves the efficacy of PDD. PLoS One. 2019;14(5):e0216503. Epub 2019/05/15. 10.1371/journal.pone.0216503

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る