リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Antidepressant Response and Stress Resilience Are Promoted by CART Peptides in GABAergic Neurons of the Anterior Cingulate Cortex」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Antidepressant Response and Stress Resilience Are Promoted by CART Peptides in GABAergic Neurons of the Anterior Cingulate Cortex

Funayama, Yuki Li, Haiyan Ishimori, Erina Kawatake-Kuno, Ayako Inaba, Hiromichi Yamagata, Hirotaka Seki, Tomoe Nakagawa, Shin Watanabe, Yoshifumi Murai, Toshiya Oishi, Naoya Uchida, Shusaku 京都大学 DOI:10.1016/j.bpsgos.2021.12.009

2023.01

概要

[Background] A key challenge in the understanding and treatment of depression is identifying cell types and molecular mechanisms that mediate behavioral responses to antidepressant drugs. Because treatment responses in clinical depression are heterogeneous, it is crucial to examine treatment responders and nonresponders in preclinical studies.

[Methods] We used the large variance in behavioral responses to long-term treatment with multiple classes of antidepressant drugs in different inbred mouse strains and classified the mice into responders and nonresponders based on their response in the forced swim test. Medial prefrontal cortex tissues were subjected to RNA sequencing to identify molecules that are consistently associated across antidepressant responders. We developed and used virus-mediated gene transfer to induce the gene of interest in specific cell types and performed forced swim, sucrose preference, social interaction, and open field tests to investigate antidepressant-like and anxiety-like behaviors.

[Results] Cartpt expression was consistently upregulated in responders to four types of antidepressants but not in nonresponders in different mice strains. Responder mice given a single dose of ketamine, a fast-acting non–monoamine-based antidepressant, exhibited high CART peptide expression. CART peptide overexpression in the GABAergic (gamma-aminobutyric acidergic) neurons of the anterior cingulate cortex led to antidepressant-like behavior and drove chronic stress resiliency independently of mouse genetic background.

[Conclusions] These data demonstrate that activation of CART peptide signaling in GABAergic neurons of the anterior cingulate cortex is a common molecular mechanism across antidepressant responders and that this pathway also drives stress resilience.

この論文で使われている画像

参考文献

1. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. (2006): Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. Am J Psychiatry 163:1905–1917.

2. Pizzagalli DA, Roberts AC (2022): Prefrontal cortex and depression [published correction appears in Neuropsychopharmacology 2022; 47: 609]. Neuropsychopharmacology 47:225–246.

3. Ploski JE, Vaidya VA (2021): The neurocircuitry of posttraumatic stress disorder and major depression: Insights into overlapping and distinct circuit dysfunction-A tribute to Ron Duman. Biol Psychiatry 90:109– 117.

4. Krishnan V, Nestler EJ (2010): Linking molecules to mood: New insight into the biology of depression. Am J Psychiatry 167:1305–1320.

5. Drevets WC (2000): Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog Brain Res 126:413–431.

6. Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, et al. (1999): Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness. Am J Psychiatry 156:675–682.

7. Duman RS, Aghajanian GK (2012): Synaptic dysfunction in depression: Potential therapeutic targets. Science 338:68–72.

8. Girgenti MJ, Wang J, Ji D, Cruz DA, Traumatic Stress Brain Research Group, Stein MB, et al. (2021): Transcriptomic organization of the human brain in post-traumatic stress disorder. Nat Neurosci 24:24–33.

9. Sequeira A, Mamdani F, Ernst C, Vawter MP, Bunney WE, Lebel V, et al. (2009): Global brain gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression. PLoS One 4:e6585.

10. Nagy C, Maitra M, Tanti A, Suderman M, Théroux JF, Davoli MA, et al. (2020): Single-nucleus transcriptomics of the prefrontal cortex in major depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons. Nat Neurosci 23:771–781.

11. Duman RS, Sanacora G, Krystal JH (2019): Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron 102:75–90.

12. Covington HE 3rd, Lobo MK, Maze I, Vialou V, Hyman JM, Zaman S, et al. (2010): Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J Neurosci 30:16082–16090.

13. Moda-Sava RN, Murdock MH, Parekh PK, Fetcho RN, Huang BS, Huynh TN, et al. (2019): Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science 364: eaat8078.

14. Ferenczi EA, Zalocusky KA, Liston C, Grosenick L, Warden MR, Amatya D, et al. (2016): Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science 351:aac9698.

15. Uchida S, Hara K, Kobayashi A, Funato H, Hobara T, Otsuki K, et al. (2010): Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. J Neurosci 30:15007–15018.

16. Bagot RC, Cates HM, Purushothaman I, Vialou V, Heller EA, Yieh L, et al. (2017): Ketamine and imipramine reverse transcriptional signatures of susceptibility and induce resilience-specific gene expression profiles. Biol Psychiatry 81:285–295.

17. Dulawa SC, Holick KA, Gundersen B, Hen R (2004): Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 29:1321–1330.

18. Schmidt EF, Warner-Schmidt JL, Otopalik BG, Pickett SB, Greengard P, Heintz N (2012): Identification of the cortical neurons that mediate antidepressant responses. Cell 149:1152–1163.

19. Crowley JJ, Brodkin ES, Blendy JA, Berrettini WH, Lucki I (2006): Pharmacogenomic evaluation of the antidepressant citalopram in the mouse tail suspension test. Neuropsychopharmacology 31:2433– 2442.

20. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. (2003): Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809.

21. Uchida S, Hara K, Kobayashi A, Otsuki K, Yamagata H, Hobara T, et al. (2011): Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron 69:359– 372.

22. Golden SA, Covington HE 3rd, Berton O, Russo SJ (2011): A standardized protocol for repeated social defeat stress in mice [published correction appears in Nat Protoc 2015; 10:643]. Nat Protoc 6:1183–1191.

23. Sakai Y, Li H, Inaba H, Funayama Y, Ishimori E, Kawatake-Kuno A, et al. (2021): Gene-environment interactions mediate stress susceptibility and resilience through the CaMKIIb/TARPg-8/AMPAR pathway. iScience

24:102504. 24. Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ, et al. (2007): Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131:391–404.

25. Uchida S, Hara K, Kobayashi A, Fujimoto M, Otsuki K, Yamagata H, et al. (2011): Impaired hippocampal spinogenesis and neurogenesis and altered affective behavior in mice lacking heat shock factor 1. Proc Natl Acad Sci U S A 108:1681–1686.

26. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, et al. (2016): NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533:481–486.

27. Casarotto PC, Girych M, Fred SM, Kovaleva V, Moliner R, Enkavi G, et al. (2021): Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 184:1299–1313.e19.

28. Porsolt RD, Le Pichon M, Jalfre M (1977): Depression: A new animal model sensitive to antidepressant treatments. Nature 266:730–732.

29. David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, et al. (2009): Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62:479– 493.

30. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, et al. (2006): Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: Implications for clinical practice. Am J Psychiatry 163:28–40.

31. Laine MA, Trontti K, Misiewicz Z, Sokolowska E, Kulesskaya N, Heikkinen A, et al. (2018): Genetic control of myelin plasticity after chronic psychosocial stress. eNeuro 5: ENEURO.0166-18.2018.

32. Luo Y, Kataoka Y, Ostinelli EG, Cipriani A, Furukawa TA (2020): National prescription patterns of antidepressants in the treatment of adults with major depression in the US between 1996 and 2015: A population representative survey based analysis [published correction appears in Front Psychiatry 2020; 11:171]. Front Psychiatry 11:35.

33. Yu Z, Zhang J, Zheng Y, Yu L (2020): Trends in antidepressant use and expenditure in six major cities in China from 2013 to 2018. Front Psychiatry 11:551.

34. Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G, et al. (2008): Application of a translational profiling approach for the comparative analysis of CNS cell types [published correction appears in Cell 2009; 139:1022]. Cell 135:749–1762.

35. Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, et al. (2008): A translational profiling approach for the molecular characterization of CNS cell types. Cell 135:738–748.

36. Carrillo-Roa T, Labermaier C, Weber P, Herzog DP, Lareau C, Santarelli S, et al. (2017): Common genes associated with antidepressant response in mouse and man identify key role of glucocorticoid receptor sensitivity. PLoS Biol 15:e2002690.

37. Sittig LJ, Carbonetto P, Engel KA, Krauss KS, Barrios-Camacho CM, Palmer AA (2016): Genetic background limits generalizability of genotype-phenotype relationships. Neuron 91:1253–1259.

38. Rogge G, Jones D, Hubert GW, Lin Y, Kuhar MJ (2008): CART peptides: Regulators of body weight, reward and other functions [published correction appears in Nat Rev Neurosci 2010; 11:218]. Nat Rev Neurosci 9:747–758.

39. Lau J, Herzog H (2014): CART in the regulation of appetite and energy homeostasis. Front Neurosci 8:313.

40. Singh A, de Araujo AM, Krieger JP, Vergara M, Ip CK, de Lartigue G (2021): Demystifying functional role of cocaine- and amphetaminerelated transcript (CART) peptide in control of energy homeostasis: A twenty-five year expedition. Peptides 140:170534.

41. Ahmadian-Moghadam H, Sadat-Shirazi MS, Zarrindast MR (2018): Cocaine- and amphetamine-regulated transcript (CART): A multifaceted neuropeptide. Peptides 110:56–77.

42. Yanik T, Dominguez G, Kuhar MJ, Del Giudice EM, Loh YP (2006): The Leu34Phe ProCART mutation leads to cocaine- and amphetamineregulated transcript (CART) deficiency: A possible cause for obesity in humans. Endocrinology 147:39–43.

43. Miraglia del Giudice E, Santoro N, Fiumani P, Dominguez G, Kuhar MJ, Perrone L (2006): Adolescents carrying a missense mutation in the CART gene exhibit increased anxiety and depression. Depress Anxiety 23:90–92.

44. Orsetti M, Di Brisco F, Canonico PL, Genazzani AA, Ghi P (2008): Gene regulation in the frontal cortex of rats exposed to the chronic mild stress paradigm, an animal model of human depression. Eur J Neurosci 27:2156–2164.

45. Roh MS, Cui FJ, Ahn YM, Kang UG (2009): Up-regulation of cocaineand amphetamine-regulated transcript (CART) in the rat nucleus accumbens after repeated electroconvulsive shock. Neurosci Res 65:210–213.

46. van Heukelum S, Mars RB, Guthrie M, Buitelaar JK, Beckmann CF, Tiesinga PHE, et al. (2020): Where is cingulate cortex? A cross-species view. Trends Neurosci 43:285–299.

47. Bicks LK, Koike H, Akbarian S, Morishita H (2015): Prefrontal cortex and social cognition in mouse and man. Front Psychol 6:1805.

48. Vogt BA, Paxinos G (2014): Cytoarchitecture of mouse and rat cingulate cortex with human homologies. Brain Struct Funct 219:185–192.

49. Goldapple K, Segal Z, Garson C, Lau M, Bieling P, Kennedy S, Mayberg H (2004): Modulation of cortical-limbic pathways in major depression: Treatment-specific effects of cognitive behavior therapy. Arch Gen Psychiatry 61:34–41.

50. Goodman M, Hazlett EA, Avedon JB, Siever DR, Chu KW, New AS (2011): Anterior cingulate volume reduction in adolescents with borderline personality disorder and co-morbid major depression. J Psychiatr Res 45:803–807.

51. Youssef MM, Underwood MD, Huang YY, Hsiung SC, Liu Y, Simpson NR, et al. (2018): Association of BDNF Val66Met polymorphism and brain BDNF levels with major depression and suicide. Int J Neuropsychopharmacol 21:528–538.

52. Gibbons A, McPherson K, Gogos A, Dean B (2021): An investigation into nicotinic receptor involvement in mood disorders uncovers novel depression candidate genes. J Affect Disord 288:154–160.

53. Shao LX, Liao C, Gregg I, Davoudian PA, Savalia NK, Delagarza K, Kwan AC (2021): Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron 109:2535–2544.e4.

54. Northoff G, Sibille E (2014): Why are cortical GABA neurons relevant to internal focus in depression? A cross-level model linking cellular, biochemical and neural network findings. Mol Psychiatry 19:966–977.

55. Sanacora G, Mason GF, Rothman DL, Krystal JH (2002): Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors. Am J Psychiatry 159:663–665.

56. Sanacora G, Mason GF, Rothman DL, Hyder F, Ciarcia JJ, Ostroff RB, et al. (2003): Increased cortical GABA concentrations in depressed patients receiving ECT. Am J Psychiatry 160:577–579.

57. Dubin MJ, Mao X, Banerjee S, Goodman Z, Lapidus KAB, Kang G, et al. (2016): Elevated prefrontal cortex GABA in patients with major depressive disorder after TMS treatment measured with proton magnetic resonance spectroscopy. J Psychiatry Neurosci 41:E37– E45.

58. Milak MS, Proper CJ, Mulhern ST, Parter AL, Kegeles LS, Ogden RT, et al. (2016): A pilot in vivo proton magnetic resonance spectroscopy study of amino acid neurotransmitter response to ketamine treatment of major depressive disorder. Mol Psychiatry 21:320–327.

59. Fogaça MV, Wu M, Li C, Li XY, Picciotto MR, Duman RS (2021): Inhibition of GABA interneurons in the mPFC is sufficient and necessary for rapid antidepressant responses. Mol Psychiatry 26:3277–3291.

60. Fuchs T, Jefferson SJ, Hooper A, Yee PH, Maguire J, Luscher B (2017): Disinhibition of somatostatin-positive GABAergic interneurons results in an anxiolytic and antidepressant-like brain state. Mol Psychiatry 22:920–930.

61. Perova Z, Delevich K, Li B (2015): Depression of excitatory synapses onto parvalbumin interneurons in the medial prefrontal cortex in susceptibility to stress. J Neurosci 35:3201–3206.

62. Labonté B, Engmann O, Purushothaman I, Menard C, Wang J, Tan C, et al. (2017): Sex-specific transcriptional signatures in human depression [published correction appears in Nat Med 2018; 24:525]. Nat Med 23:1102–1111.

63. Kawatake-Kuno A, Murai T, Uchida S (2021): The molecular basis of depression: Implications of sex-related differences in epigenetic regulation. Front Mol Neurosci 14:708004.

64. Kornstein SG, Schatzberg AF, Thase ME, Yonkers KA, McCullough JP, Keitner GI, et al. (2000): Gender differences in treatment response to sertraline versus imipramine in chronic depression. Am J Psychiatry 157:1445–1452.

65. Uhr M, Tontsch A, Namendorf C, Ripke S, Lucae S, Ising M, et al. (2008): Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron 57:203– 209.

66. Foster SR, Hauser AS, Vedel L, Strachan RT, Huang XP, Gavin AC, et al. (2019): Discovery of human signaling systems: Pairing peptides to G protein-coupled receptors. Cell 179:895–908.e21.

67. Yosten GL, Harada CM, Haddock C, Giancotti LA, Kolar GR, Patel R, et al. (2020): GPR160 de-orphanization reveals critical roles in neuropathic pain in rodents. J Clin Invest 130:2587–2592.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る