リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A study on the relation for the high magnetic field isolated neutron star population with X-ray observation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A study on the relation for the high magnetic field isolated neutron star population with X-ray observation

Katsuma Eri 山形大学

2020.03.31

概要

We present a study on the relation for the high magnetic field isolated neutron star population with X-ray observation.

Neutron stars (NSs) are extremely compact, fast-spinning remnants of core- collapse supernova explosions, which occurs when the life of a massive star with masses about more than 9M⊙ ends. Typical NSs have the dipole magnetic field Bd of 1012 G, the rotation period P ranging milliseconds and sec, the mass M ∼ 1.4M⊙, the radius R ∼ 10 km, and the density ρ ∼ 1014 g/cm3, respectively. And, the NS is supported by nuclear power mainly composed of neutrons. These states cannot be reproduced in the laboratories on the Earth so that NSs are one of the most important objects in order to verify the physics in the extreme state.

Today, we recognise that the high magnetic field isolated NSs whose dipole magnetic field is Bd > 1013 G are divided into the three major populations. Each population has its own characteristics. Their characteristics are most evident in the X-ray bands. The first population is the rotation-powered pulsars (RPPs). RPPs are the standard NS population and are usually discovered in the radio bands or/and the gamma-ray bands. They are thought to be shined with its rota- tion energy. The X-ray luminosity Lx is about 1/1000 of the rotation luminosity Lrot empirically. The second population is the high magnetic pulsars, called mag- netars for short. Magnetars are characterised by the frequent bursting activity and by the high X-ray luminosity that is larger than the rotation luminosity. It is thought to be shine with the magnetic energy rather than the rotation energy. The third population is the X-ray isolated neutron stars, abbreviated XINSs or XDINSs. XINSs shine with the thermal energy which is likely to be fueled by the magnetic field. XINSs are observationally characterized by the thermal emission in the soft X-ray bands and by the high X-ray luminosity larger than the rota- tion luminosity. What makes this distinctive manifestation of the neutron stars, namely RPPs, magnetars and XINSs, are not understood so far.

The variety of the supernova explosion is one of the candidates to solve this mys- tery. However, according to Keane & Kramer (2008), the Galactic core-collapse supernova rate (CCSN) is smaller than the total birthrate of each population derived by the observation. Thus, they suggest that some of PSRs, XINSs and possibly also magnetars may be different evolutionary stages of the same objects. Recently, XINSs are thought to be evolved from magnetars. Since magnetars and XINSs shine with the magnetic energy due to the strong dipole magnetic field larger than that of RPPs, the dipole magnetic field strength may determine the distinctive manifestation of them. However, the discovery of “weak field magne-tar” whose dipole field Bd ∼ 6.1×1012 G is the comparable magnetic field strength as compare with RPPs (Esposito et al. 2010; Rea et al. 2010, 2013) indicates that the strong dipole field is not always essential. Theoretically, the toroidal field is proposed to play an essential role in the magnetar activity.

The great importance objects for understanding the magnetic field formation and its evolution scenario are the strong magnetic field rotation powered pulsars (High-B RPPs), which have a strong dipole magnetic field about 1013−14 G in RPPs. Since some of High-B RPPs exhibit the magnetar-like and the XINS-like features, they may be the key to understand the relation for the high magnetic field isolated NS population. However, the survey for such objects with the relatively small spin-down luminosity is not complete. Toward a more complete survey, in this paper, we carry out a systematic survey for the X-ray counterparts using the archival data and the subsidiary observations with the X-ray Telescope (XRT; Burrows et al. 2005) onboard the Neil Gehrels Swift Observatory (Gehrels et al. 2004). We aim to get a hint linking these three populations and hopefully to understand what physical parameters make the different characteristics seen in the population.

We analyse 21 out of the 27 high-B PSRs that are in the ATNF pulsar catalogue but have not been reported or have no effective upper-limits in the X-ray bands, where 6 objects are newly observed by us, and 15 objects are taken from the archival data. As a result, we have new 3σ upper-limits for all the 21 objects. Since the upper-limits are tight, we conclude that we do not find any magnetar-like high- B PSRs such as PSR J1819−1458. The probability of the high X-ray efficiency in the high-B PSRs is obtained to be 11% − 29%. Also, combining the previous observations, we discuss which parameter causes magnetar-like properties. It may be suggested that the magnetar-like properties appear only when Bd ≳ 1013.5 G for the radio pulsar population. This is true even if the radio-quiet high-B RPPs are included.

We revisit the relation for the high and low temperature ratio that is obtained by the double blackbody model fitting for the three populations as shown by Yoneyama et al. (2019). As a result, we found that ordinary RPPs also follow the relation. We also perform the verification about the relationship for the tempera- ture of the double blackbody components and its luminosities. The temperature and the luminosity relation suggests that XINSs, high-B RPPs and RPPs have local hot spots such as polar cap heating, unlike magnetars.

参考文献

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, ApJ, 711, 64

Abdo, A. A., Ajello, M., Allafort, A., et al. 2013, ApJS, 208, 17

Anderson, G. E., Gaensler, B. M., Slane, P. O., et al. 2012, ApJ, 751, 53

Archibald, R. F., Kaspi, V. M., Tendulkar, S. P., & Scholz, P. 2016, ApJ, 829, L21

Arumugasamy, P., Pavlov, G. G., & Kargaltsev, O. 2014, ApJ, 790, 103

Becker, W. 2009, in Astrophysics and Space Science Library, ed. W. Becker, Vol. 357, 91

Becker, W., & Truemper, J. 1997, A&A, 326, 682

Becker, W., Weisskopf, M. C., Tennant, A. F., et al. 2004, ApJ, 615, 908

Beskin, V. S., Chernov, S. V., Gwinn, C. R., & Tchekhovskoy, A. A. 2015, Space Sci. Rev., 191, 207

Bˆırzan, L., Pavlov, G. G., & Kargaltsev, O. 2016, ApJ, 817, 129

Bogdanov, S., Ng, C. Y., & Kaspi, V. M. 2014, ApJ, 792, L36

Burrows, D. N., Hill, J. E., Nousek, J. A., et al. 2003, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4851, Proc. SPIE, ed. J. E. Truemper & H. D. Tananbaum, 1320–1325

Burrows, D. N., Hill, J. E., Nousek, J. A., et al. 2005, Space Sci. Rev., 120, 165

Camero, A., Papitto, A., Rea, N., et al. 2014, MNRAS, 438, 3291

Caraveo, P. A., De Luca, A., Marelli, M., et al. 2010, ApJ, 725, L6

Chang, C., Pavlov, G. G., Kargaltsev, O., & Shibanov, Y. A. 2012, ApJ, 744, 81

De Luca, A., Caraveo, P. A., Mereghetti, S., Negroni, M., & Bignami, G. F. 2005, ApJ, 623, 1051

Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E., & Hessels, J. W. T. 2010, Nature, 467, 1081

Dexter, J., Degenaar, N., Kerr, M., et al. 2017, MNRAS, 468, 1486

Enoto, T., Kisaka, S., & Shibata, S. 2019, Reports on Progress in Physics, 82, 106901

Enoto, T., Makishima, K., Nakazawa, K., et al. 2011a, PASJ, 63, 387

Enoto, T., Makishima, K., Rea, N., et al. 2011b, Astrophysics and Space Science Pro- ceedings, 21, 275

Enoto, T., Nakazawa, K., Makishima, K., et al. 2010, ApJ, 722, L162

Enoto, T., Shibata, S., Kitaguchi, T., et al. 2017, ApJS, 231, 8

Esposito, P., Israel, G. L., Zane, S., et al. 2008, MNRAS, 390, L34

Esposito, P., Israel, G. L., Turolla, R., et al. 2010, MNRAS, 405, 1787

Gaensler, B. M., van der Swaluw, E., Camilo, F., et al. 2004, ApJ, 616, 383

Gavriil, F. P., Gonzalez, M. E., Gotthelf, E. V., et al. 2008, Science, 319, 1802

Gehrels, N. 1986, ApJ, 303, 336

Gehrels, N., Chincarini, G., Giommi, P., et al. 2004, ApJ, 611, 1005

Gotthelf, E. V., Halpern, J. P., Buxton, M., & Bailyn, C. 2004, ApJ, 605, 368

Gotthelf, E. V., Tomsick, J. A., Halpern, J. P., et al. 2014, ApJ, 788, 155

Harding, A., Enoto, T., Kobayaashi, S., et al. 2019, in AAS/High Energy Astrophysics Division, AAS/High Energy Astrophysics Division, 111.10

Harding, A. K. 2013, Frontiers of Physics, 8, 679

He, C., Ng, C. Y., & Kaspi, V. M. 2013, ApJ, 768, 64

Hermsen, W., Kuiper, L., Hessels, J. W. T., et al. 2017, MNRAS, 466, 1688

Hessels, J. W. T., Roberts, M. S. E., Ransom, S. M., et al. 2004, ApJ, 612, 389

Hill, J. E., Burrows, D. N., Nousek, J. A., et al. 2004, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 5165, Proc. SPIE, ed. K. A. Flanagan & O. H. W. Siegmund, 217–231

Hohle, M. M., Haberl, F., Vink, J., et al. 2012, MNRAS, 423, 1194

Hughes, J. P., Slane, P. O., Burrows, D. N., et al. 2001, ApJ, 559, L153

Kaaret, P., Marshall, H. L., Aldcroft, T. L., et al. 2001, ApJ, 546, 1159

Kargaltsev, O., Durant, M., Misanovic, Z., & Pavlov, G. G. 2012a, Science, 337, 946

Kargaltsev, O., Durant, M., Pavlov, G. G., & Garmire, G. 2012b, ApJS, 201, 37

Kargaltsev, O., & Pavlov, G. G. 2007, ApJ, 670, 655

Kargaltsev, O., & Pavlov, G. G. 2008, in American Institute of Physics Conference Series, Vol. 983, 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More, ed. C. Bassa, Z. Wang, A. Cumming, & V. M. Kaspi, 171–185

Kargaltsev, O., Pavlov, G. G., & Garmire, G. P. 2007, ApJ, 660, 1413

Kargaltsev, O., Pavlov, G. G., & Wong, J. A. 2009, ApJ, 690, 891

Kaspi, V. M., & Beloborodov, A. M. 2017, ARA&A, 55, 261

Keane, E. F., & Kramer, M. 2008, MNRAS, 391, 2009

Kisaka, S., & Kojima, Y. 2011, ApJ, 739, 14

Klingler, N., Kargaltsev, O., Rangelov, B., et al. 2016a, ApJ, 828, 70

Klingler, N., Rangelov, B., Kargaltsev, O., et al. 2016b, ApJ, 833, 253

Kuiper, L., & Hermsen, W. 2015, MNRAS, 449, 3827

Kuiper, L., Hermsen, W., Urama, J. O., et al. 2010, A&A, 515, A34

Li, X. H., Lu, F. J., & Li, T. P. 2005, ApJ, 628, 931

Lu, F., Wang, Q. D., Gotthelf, E. V., & Qu, J. 2007, ApJ, 663, 315

Maitra, C., Acero, F., & Venter, C. 2017, A&A, 597, A75

Manchester, R. N., Hobbs, G. B., Teoh, A., & Hobbs, M. 2005, AJ, 129, 1993

Marelli, M., Belfiore, A., Saz Parkinson, P., et al. 2014, ApJ, 790, 51

Matheson, H., & Safi-Harb, S. 2010, ApJ, 724, 572

McGowan, K. E., Zane, S., Cropper, M., Vestrand, W. T., & Ho, C. 2006, ApJ, 639, 377

McLaughlin, M. A., Rea, N., Gaensler, B. M., et al. 2007, ApJ, 670, 1307

Mignani, R. P., Razzano, M., Esposito, P., et al. 2012, A&A, 543, A130

Misanovic, Z., Pavlov, G. G., & Garmire, G. P. 2008, ApJ, 685, 1129

Moretti, A., Campana, S., Tagliaferri, G., et al. 2004, in Society of Photo-Optical In- strumentation Engineers (SPIE) Conference Series, Vol. 5165, Proc. SPIE, ed. K. A. Flanagan & O. H. W. Siegmund, 232–240

Nakagawa, Y. E., Yoshida, A., Yamaoka, K., & Shibazaki, N. 2009, PASJ, 61, 109

Ng, C. Y., Kaspi, V. M., Ho, W. C. G., et al. 2012, ApJ, 761, 65

Ng, C. Y., Romani, R. W., Brisken, W. F., Chatterjee, S., & Kramer, M. 2007, ApJ, 654, 487

Ng, C. Y., Slane, P. O., Gaensler, B. M., & Hughes, J. P. 2008, ApJ, 686, 508

Olausen, S. A., & Kaspi, V. M. 2014, ApJS, 212, 6

Olausen, S. A., Kaspi, V. M., Lyne, A. G., & Kramer, M. 2010, ApJ, 725, 985

Olausen, S. A., Zhu, W. W., Vogel, J. K., et al. 2013, ApJ, 764, 1

Pavlov, G. G., Zavlin, V. E., Sanwal, D., Burwitz, V., & Garmire, G. P. 2001, ApJ, 552, L129

Pires, A. M., Schwope, A. D., Haberl, F., et al. 2019, A&A, 623, A73

Pivovaroff, M. J., Kaspi, V. M., & Gotthelf, E. V. 2000, ApJ, 528, 436

Pons, J. A., & Perna, R. 2011, ApJ, 741, 123

Porquet, D., Decourchelle, A., & Warwick, R. S. 2003, A&A, 401, 197

Posselt, B., Spence, G., & Pavlov, G. G. 2015, ApJ, 811, 96

Possenti, A., Cerutti, R., Colpi, M., & Mereghetti, S. 2002, A&A, 387, 993

Prinz, T., & Becker, W. 2015, arXiv e-prints, arXiv:1511.07713

Ray, P. S., Kerr, M., Parent, D., et al. 2011, ApJS, 194, 17

Rea, N., Israel, G. L., Oosterbroek, T., et al. 2007, Ap&SS, 308, 505

Rea, N., Esposito, P., Turolla, R., et al. 2010, Science, 330, 944

Rea, N., Israel, G. L., Pons, J. A., et al. 2013, ApJ, 770, 65

Renaud, M., Marandon, V., Gotthelf, E. V., et al. 2010, ApJ, 716, 663

Rigoselli, M., Mereghetti, S., Suleimanov, V., et al. 2019, A&A, 627, A69

Romani, R. W., Ng, C. Y., Dodson, R., & Brisken, W. 2005, ApJ, 631, 480

Rousseau, R., Grondin, M. H., Van Etten, A., et al. 2012, A&A, 544, A3

Sato, T., Bamba, A., Nakamura, R., & Ishida, M. 2010, PASJ, 62, L33

Seward, F. D., & Wang, Z.-R. 1988, ApJ, 332, 199

Shibata, S., Watanabe, E., Yatsu, Y., Enoto, T., & Bamba, A. 2016, ApJ, 833, 59

Speagle, J. S., Kaplan, D. L., & van Kerkwijk, M. H. 2011, ApJ, 743, 183

Tam, C. R., Gavriil, F. P., Dib, R., et al. 2008, ApJ, 677, 503

Tepedelenlıoˇglu, E., & O¨ gelman, H. 2005, ApJ, 630, L57

Turolla, R., Zane, S., & Watts, A. L. 2015, Reports on Progress in Physics, 78, 116901

Uchiyama, H., Koyama, K., Matsumoto, H., et al. 2011, PASJ, 63, S865

Vigan`o, D., Rea, N., Pons, J. A., et al. 2013, MNRAS, 434, 123

Yakovlev, D. G., & Pethick, C. J. 2004, ARA&A, 42, 169

Yoneyama, T., Hayashida, K., Nakajima, H., & Matsumoto, H. 2019, PASJ, 71, 17

Zhu, W., Kaspi, V. M., Dib, R., et al. 2008, ApJ, 686, 520

Zhu, W., Kaspi, V. M., Gonzalez, M. E., & Lyne, A. G. 2009, ApJ, 704, 1321

Zhu, W., Kaspi, V. M., McLaughlin, M. A., et al. 2011, in American Institute of Physics Conference Series, Vol. 1379, American Institute of Physics Conference Series, ed. E. G¨o˘gu¨s, , T. Belloni, & U¨ . Ertan, 70–73

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る