リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Laser resonance frequency analysis : a novel measurement approach to evaluate acetabular cup stability during surgery (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Laser resonance frequency analysis : a novel measurement approach to evaluate acetabular cup stability during surgery (本文)

菊池, 駿介 慶應義塾大学

2021.03.23

概要

Artificial joint acetabular cup stability is essential for successful total hip arthroplasty. However, a quantitative evaluation approach for clinical use is lacking. We developed a resonance frequency analysis (RFA) system involving a laser system that is fully contactless. This study aimed to investigate the usefulness of laser RFA for evaluating acetabular cup stability. First, the finite element method was performed to determine the vibration mode for analysis. Second, the acetabular cup was press-fitted into a reamed polyurethane cavity that replicated the human acetabular roof. The implanted acetabular cup was vibrated with pulse laser irradiation and the induced vibration was detected with a laser Doppler vibrometer. The time domain signal from the vibrometer was analyzed by fast Fourier transform to obtain the vibration frequency spectrum. After laser RFA, the pull-down force of the acetabular cup was measured as conventional implant fixation strength. The frequency of the first highest amplitude between 2 kHz and 6 kHz was considered as the resonance peak frequency, and its relationship with the pull-down force was assessed. The peak frequency could predict the pull-down force (R2 = 0.859, p < 0.000). Our findings suggest that laser RFA might be useful to measure acetabular cup stability during surgery.

参考文献

1. Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Jt. Surg. 2007, 89, 780–785.

2. Akiyama, H.; Hoshino, A.; Iida, H.; Shindo, H.; Takakura, Y.; Miura, H.; Yamamoto, K.; Yoshiya, S.; Hasegawa, Y.; Shimamura, T.; et al. A pilot project for the Japan arthroplasty register. J. Orthop. Sci. 2012, 17, 358–369. [CrossRef] [PubMed]

3. Kyriakopoulos, G.; Poultsides, L.; Christofilopoulos, P. Total hip arthroplasty through an anterior approach: The pros and cons. EFORT Open Rev. 2018, 3, 574–583. [CrossRef] [PubMed]

4. Kwong, L.M.; O’Connor, D.O.; Sedlacek, R.C.; Krushell, R.J.; Maloney, W.J.; Harris, W.H. A quantitative in vitro assessment of fit and screw fixation on the stability of a cementless hemispherical acetabular component. J. Arthroplast. 1994, 9, 163–170. [CrossRef]

5. Hamilton, W.G.; Calendine, C.L.; Beykirch, S.E.; Hopper, R.H., Jr.; Engh, C.A. Acetabular fixation options: First-generation modular cup curtain calls and caveats. J. Arthroplast. 2007, 22, 75–81. [CrossRef]

6. Miettinen, S.S.; Makinen, T.J.; Laaksonen, I.; Makela, K.; Huhtala, H.; Kettunen, J.; Remes, V. Early aseptic loosening of cementless monoblock acetabular components. Int. Orthop. 2017, 41, 715–722. [CrossRef]

7. Kim, Y.S.; Brown, T.D.; Pedersen, D.R.; Callaghan, J.J. Reamed surface topography and component seating in press-fit cementless acetabular fixation. J. Arthroplast. 1995, 10, S14–S21. [CrossRef]

8. Henys, P.; Capek, L.; Fencl, J.; Prochazka, E. Evaluation of acetabular cup initial fixation by using resonance frequency principle. Proc. Inst. Mech. Eng. H 2015, 229, 3–8. [CrossRef]

9. Michel, A.; Bosc, R.; Sailhan, F.; Vayron, R.; Haiat, G. Ex vivo estimation of cementless acetabular cup stability using an impact hammer. Med. Eng. Phys. 2016, 38, 80–86. [CrossRef]

10. Tijou, A.; Rosi, G.; Hernigou, P.; Flouzat-Lachaniette, C.H.; Haiat, G. Ex Vivo Evaluation of Cementless Acetabular Cup Stability Using Impact Analyses with a Hammer Instrumented with Strain Sensors. Sensors 2017, 18, 62. [CrossRef]

11. Tabata, T.; Kaku, N.; Hara, K.; Tsumura, H. Initial stability of cementless acetabular cups: Press-fit and screw fixation interaction—An in vitro biomechanical study. Eur. J. Orthop. Surg. Traumatol. 2015, 25, 497–502. [CrossRef] [PubMed]

12. Kuhn, A.; Scheller, G.; Schwarz, M. Primary stability of cement-free press-fit acetabulum cups. In vitro displacement studies. Biomed. Tech. Biomed. Eng. 1999, 44, 356–359.

13. Wetzel, R.; Simnacher, M.; Scheller, G. Initial stability of press-fit acetabular cups—An in-vitro study. Biomed. Tech. Biomed. Eng. 2005, 50, 400–403. [CrossRef] [PubMed]

14. Kanda, A.; Kaneko, K.; Obayashi, O.; Mogami, A.; Iwase, H. Limitation of total hip arthroplasty of the acetabular roof by press-fit without screw fixation: Discussion of a biomechanical study. Eur. J. Orthop. Surg. Traumatol. 2013, 23, 417–424. [CrossRef] [PubMed]

15. Meredith, N.; Alleyne, D.; Cawley, P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin. Oral Implant. Res. 1996, 7, 261–267. [CrossRef]

16. Meredith, N.; Book, K.; Friberg, B.; Jemt, T.; Sennerby, L. Resonance frequency measurements of implant stability in vivo. A cross-sectional and longitudinal study of resonance frequency measurements on implants in the edentulous and partially dentate maxilla. Clin. Oral Implant. Res. 1997, 8, 226–233. [CrossRef]

17. Valderrama, P.; Oates, T.W.; Jones, A.A.; Simpson, J.; Schoolfield, J.D.; Cochran, D.L. Evaluation of two different resonance frequency devices to detect implant stability: A clinical trial. J. Periodontol. 2007, 78, 262–272. [CrossRef]

18. Huwiler, M.A.; Pjetursson, B.E.; Bosshardt, D.D.; Salvi, G.E.; Lang, N.P. Resonance frequency analysis in relation to jawbone characteristics and during early healing of implant installation. Clin. Oral Implant. Res. 2007, 18, 275–280. [CrossRef]

19. Nakashima, D.; Ishii, K.; Nishiwaki, Y.; Kawana, H.; Jinzaki, M.; Matsumoto, M.; Nakamura, M.; Nagura, T. Quantitative CT-based bone strength parameters for the prediction of novel spinal implant stability using resonance frequency analysis: A cadaveric study involving experimental micro-CT and clinical multislice CT. Eur. Radiol. Exp. 2019, 3, 1. [CrossRef]

20. Nakashima, D.; Ishii, K.; Matsumoto, M.; Nakamura, M.; Nagura, T. A study on the use of the Osstell apparatus to evaluate pedicle screw stability: An in-vitro study using micro-CT. PLoS ONE 2018, 13, e0199362. [CrossRef]

21. Michel, A.; Bosc, R.; Meningaud, J.P.; Hernigou, P.; Haiat, G. Assessing the Acetabular Cup Implant Primary Stability by Impact Analyses: A Cadaveric Study. PLoS ONE 2016, 11, e0166778. [CrossRef] [PubMed]

22. Qi, G.; Paul Mouchon, W.; Tan, T.E. How much can a vibrational diagnostic tool reveal in total hip arthroplasty loosening? Clin. Biomech. 2003, 18, 444–458. [CrossRef]

23. Goossens, Q.; Leuridan, S.; Henys, P.; Roosen, J.; Pastrav, L.; Mulier, M.; Desmet, W.; Denis, K.; Vander Sloten, J. Development of an acoustic measurement protocol to monitor acetabular implant fixation in cementless total hip Arthroplasty: A preliminary study. Med. Eng. Phys. 2017, 49, 28–38. [CrossRef] [PubMed]

24. Georgiou, A.P.; Cunningham, J.L. Accurate diagnosis of hip prosthesis loosening using a vibrational technique.

Clin. Biomech. 2001, 16, 315–323. [CrossRef]

25. Mikami, K.; Hasegawa, N.; Okada, H.; Kondo, S.; Nishikino, M.; Kawachi, T. Flash-lamp-pumped 4 J, 50 Hz Nd: YAG nanosecond laser system for mobile and transportable equipment. Jpn. J. Appl. Phys. 2017, 56, 082701. [CrossRef]

26. Kurahashi, S.; Mikami, K.; Kitamura, T.; Hasegawa, N.; Okada, H.; Kondo, S.; Nishikino, M.; Kawachi, T.; Shimada, Y. Demonstration of 25-Hz-inspection-speed laser remote sensing for internal concrete defects.

J. Appl. Remote Sens. 2018, 12, 015009. [CrossRef]

27. Amirouche, F.; Solitro, G.; Broviak, S.; Gonzalez, M.; Goldstein, W.; Barmada, R. Factors influencing initial cup stability in total hip arthroplasty. Clin. Biomech. 2014, 29, 1177–1185. [CrossRef]

28. Debruyne, S.; Grognard, N.; Verleye, G.; Van Massenhove, K.; Mavreas, D.; Vannet, B.V. ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency. Int. J. Implant Dent. 2017, 3, 44. [CrossRef]

29. Henys, P.; Capek, L. Impact Force, Polar Gap and Modal Parameters Predict Acetabular Cup Fixation: A Study on a Composite Bone. Ann. Biomed. Eng. 2018, 46, 590–604. [CrossRef]

30. Adler, E.; Stuchin, S.A.; Kummer, F.J. Stability of press-fit acetabular cups. J. Arthroplast. 1992, 7, 295–301. [CrossRef]

31. Henys, P.; Leuridan, S.; Goossens, Q.; Mulier, M.; Pastrav, L.; Desmet, W.; Sloten, J.V.; Denis, K.; Capek, L. Modal frequency and shape curvature as a measure of implant fixation: A computer study on the acetabular cup. Med. Eng. Phys. 2018, 60, 30–38. [CrossRef] [PubMed]

32. ASTM. F1839-01 Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments; American Society for Testing and Materials: West Conshohocken, PA, USA, 2001.

33. Pandit, H.; Glyn-Jones, S.; McLardy-Smith, P.; Gundle, R.; Whitwell, D.; Gibbons, C.L.; Ostlere, S.; Athanasou, N.; Gill, H.S.; Murray, D.W. Pseudotumours associated with metal-on-metal hip resurfacings.

J. Bone Jt. Surg. 2008, 90, 847–851. [CrossRef] [PubMed]

34. Daniel, J.; Holland, J.; Quigley, L.; Sprague, S.; Bhandari, M. Pseudotumors associated with total hip arthroplasty. J. Bone Jt. Surg. 2012, 94, 86–93. [CrossRef] [PubMed]

35. Willert, H.G.; Buchhorn, G.H.; Fayyazi, A.; Flury, R.; Windler, M.; Koster, G.; Lohmann, C.H. Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints. A clinical and histomorphological study.

J. Bone Jt. Surg. 2005, 87, 28–36. [CrossRef]

36. Langton, D.J.; Jameson, S.S.; Joyce, T.J.; Hallab, N.J.; Natu, S.; Nargol, A.V. Early failure of metal-on-metal bearings in hip resurfacing and large-diameter total hip replacement: A consequence of excess wear. J. Bone Jt. Surg. 2010, 92, 38–46. [CrossRef]

37. Campbell, P.; Ebramzadeh, E.; Nelson, S.; Takamura, K.; De Smet, K.; Amstutz, H.C. Histological features of pseudotumor-like tissues from metal-on-metal hips. Clin. Orthop. Relat. Res. 2010, 468, 2321–2327. [CrossRef]

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る