リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of Isotope Selective CT Imaging Based on Nuclear Resonance Fluorescence」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of Isotope Selective CT Imaging Based on Nuclear Resonance Fluorescence

ALI, KHALED ALI MOHAMMED 京都大学 DOI:10.14989/doctor.k24254

2022.09.26

概要

本論文は、原子力エネルギー利用の安全性向上のために、レーザーコンプトン(LCS)ガンマ線を用いた核共鳴蛍光散乱(NRF)による手法を用いて、非破壊で特定の同位体の分布を視覚化可能にする、NRF-CTイメージング技術の開発を行った結果をまとめたもので、8章からなっている。

第1章は序論で、本研究の背景である核燃料物質とその防護や核セキュリティの重要性及びそのための技術について述べるとともに、本論文で取り上げるNRFによる非破壊検査について概略を述べ、本研究の目的と内容について整理している。

第2章では、本研究に必要となる物質とガンマ線の相互作用について述べている。特にNRF現象については、その物理現象からNRF-CTイメージング測定に必要な散乱断面積やその角度依存性等を詳しく述べている。第3章では核物質の非破壊検査法について既存技術のレビューを行うとともに、本研究で行うNRFを用いた非破壊検査法について、その原理を述べるとともに、関連するこれまでの研究開発状況について述べている。

4章では、本研究の実験手法について、まずLCSガンマ線源の原理と、分子科学研究所UVSOR-IIIのBL1Uビームラインに構築したLCSガンマ線について述べている。本研究ではNRF測定に必要なLCSガンマ線を、分子科学研究所のUVSOR-III放射光施設のビームラインBL1Uに、最大平均出力50W、レーザー波長1.896μmのレーザーシステムを導入して開発している。この結果、746MeVの電子ビーム間の正面衝突により、208Pbの5.512MeVのNRFレベルを励起可能な、最大エネルギー5.528MeVのLCSガンマ線を発生することに成功している。また、第5章以下で実験に用いるNRF-CT測定システム及びCTサンプルについて述べている。

第5章では、2次元でのNRF-CTイメージング手法を用いた同位体識別能力についての実証実験について述べている。実証実験は鉛の同位体である206Pbと208Pbの6㎜φのロッドを、直径25mm、高さ20mmのアルミ製CTターゲットに挿入し、2DNRF-CT画像の取得を行っている。この結果得られた全吸収データから、原子吸収による成分を取り除くことで、NRFでの吸収成分のみを取り出し、画像再構築を行うことで、208Pbのみ選択的に画像化することに成功している。なお、本実証実験では60時間の測定時間により、画像分解能2mm/pixelを得ている。

第6章では、第5章で行った2次元での同位体選択NRF-CTイメージング手法を3次元に拡張した実験について述べている。3次元画像取得のために、実験条件を最適化し、測定時間48時間にて、208Pbのみを選択的に水平方向に4mm/pixel、垂直方向に8mm/pixelの画像分解能で画像化することに成功している。

第7章では、3次元NRF-CTイメージングの高分解能化及び測定時間の短縮化に関して、融合視覚化(FV)法による解決を提案して、実証実験を行った結果について述べている。ここではNRF-CT画像測定と同等の実験条件下で、3次元ガンマCT画像を測定し、3次元NRF-CT画像とのFV処理を行い、サンプル中の208Pbの3次元分布を垂直・水平方向に1mm/pixelの高分解にて得ることに成功している。

第8章では、本論文で得られた成果について要約するとともに、本研究により得られた結果から、NRF-CTイメージング手法の実用化に向けた課題を整理し、特に複数の同位体の同定と定量化の見通しについて述べている。

以上、本論文は原子力エネルギー利用の安全性向上を目指し、非破壊で特定の同位体の視覚化を可能にすることが可能なNRF-CTイメージング手法について、世界で初めて実験的に実証したものであり、学術上、実際上寄与するところが少なくない。よって、本論文は博士の学位審査の請求に値すると認める。また、修了に必要な単位を修得済みであることを確認した。

この論文で使われている画像

参考文献

[1] National Research Council (US) Committee on Medical Isotope Production Without Highly Enriched Uranium, Medical Isotope Production Without Highly Enriched Uranium, Washington, DC: National Academies Press, 2009.

[2] Khalid Al Nabhani, Faisal Khan, Nuclear Radioactive Materials in the Oil and Gas Industry, 1ed., Elsevier, 2020, p. 328.

[3] International Atomic Energy Agency, IAEA Safety Glossary, Terminology Used in Nuclear Safety and Radiation Protection, 2018ed. , Vienna: IAEA, 2019.

[4] International Atomic Energy Agency, Energy, Electricity and Nuclear Power Estimates for the Period up to 2050, 2021ed., Vienna: IAEA, 2021.

[5] International Atomic Energy Agency, World Energy Outlook, Paris: IAEA, 2021.

[6] Frank Barnaby, How to Build a Nuclear Bomb: and other Weapons of Mass Destruction, New York: Nation Books, 2004.

[7] Jeremy Bernstein, Nuclear Weapons: What You Need to Know Illustrated Edition, Illustrateded., Cambridge University Press, 2010, p. 316.

[8] K. Linga Murty, Indrajit Charit, An Introduction to Nuclear Materials, Fundamentals and Applications, 1ed., Wiley-VCH, 2013, p. 398.

[9] United States Nuclear Regulatory Commission, Protection People and the Environment, "Nuclear Materials," 04 November 2021. REFERENCES https://www.nrc.gov/reading-rm/basic-ref/glossary/fissile-material.html.

[10] Abe Tomoyuki, Ackland Graeme J., Aerts Alexander, Agarwal Renu, Agarwal Shradha, Alemberti Alessandro, Allen Todd R., Ambard Antoine, Andresen Peter L., Asakura Koichi, Asta Mark, Comprehensive Nuclear Materials, 2ed., R. E. S. Rudy J. M. Konings, Ed., Elsevier Ltd, 2020, p. 4868.

[11] Atomic Energy Act of 1954 (P.L. 83–703), Nuclear Regulatory Legislation 113th Congress. 2nd Session, vol. 1, Washington: Office of the General Counsel, 2015.

[12] World Nuclear Association, "Hiroshima, Nagasaki, and Subsequent Weapons Testing," 2016. https://www.world-nuclear.org/information-library/safety-andsecurity/non-proliferation.aspx.

[13] Y. R. Rodriguez, "Plutonium," in Encyclopedia of Toxicology, 3ed., P. Wexler, Ed., Academic Press, 2014, pp. 982-985.

[14] Arthur K. Parpart, "The permeability of the mammalian erythrocyte to deuterium oxide (heavy water)," Journal of Cellular and Comparative Physiology, vol. 7, no. 2, pp. 153-162, 1935.

[15] Chris Waltham, "An Early History of Heavy Water," Vancouver B.C., Canada, 1998.

[16] Doug Reilly, Norbert Ensslin, Hastings smith, Jr., Passive Nondestructive Assay of Nuclear Materials, S. Kreiner, Ed., Washington, DC: Office of Nuclear Regulatory Research. U. S. Nuclear Regulatory Commission, 1991. REFERENCES

[17] A. B. Lovins, "Nuclear weapons and power-reactor plutonium," Nature, vol. 283, no. 5750, p. 817–823, 1980.

[18] D. Brugge, "Uranium," in Encyclopedia of Toxicology, 3ed., P. Wexler, Ed., Academic Press, 2014, pp. 883-884.

[19] GlobalSecurity.org., "Uranium Isotopes," 5 February 2020. https://www.globalsecurity.org/wmd/intro/u-isotopes.htm.

[20] International Panel on Fissile Materials, "Global Fissile Material Report 2015: Nuclear Weapon and Fissile Material Stockpiles and Production," 2015.

[21] P. A. d. Groot, Ed., "Isotope Separation Methods," in Handbook of Stable Isotope Analytical Techniques, Elsevier, 2009, pp. 1025-1032.

[22] W. N. Association, "Uranium Enrichment," September 2020. https://www.world-nuclear.org/information-library/nuclear-fuelcycle/conversion-enrichment-and-fabrication/uranium-enrichment.aspx.

[23] Philip Casey Durst, Scott Demuth, James Morgan, Brent McGinnis, Michael Whitaker, "Safeguards Guidance for Designers of Commercial Nuclear Facilities International Safeguards Requirements for Uranium Enrichment Plants," in Northwest International Conference on Global Nuclear Security - The Decade Ahead, 2010.

[24] A. Fishman, R. Frederickson, A. White, "Safeguarding enriched uranium at a centrifuge enrichment plant," Nuclear Materials Management, vol. 5, no. 3, pp. 425-437, 22 June 1976.

[25] International Atomic Energy Agency, IAEA Safeguards Glossary, 2001ed., Vienna: IAEA, 2002. REFERENCES

[26] Hideaki Ohgaki, Toshiteru Kii, Kai Masuda, Tsuyoshi Misawa, CheolHo Pyeon, Ryoichi Hajima, Takehito Hayakawa, Toshiyuki Shizuma, Keigo Kawase, Masaki Kando, Hiroyuki Toyokawa, "Conceptual design of a nuclear material detection system based on the neutron/gamma-ray hybrid approach," in IEEE International Conference on Technologies for Homeland Security (HST), 2010.

[27] Hideaki Ohgaki, Mohamed Omer, Hani Negm, Toshitada Hori, Toshiteru Kii, Kai Masuda, Tsuyoshi Misawa, Cheolho Pyeon, Ryoichi Hajima, Takehito Hayakawa, Toshiyuki Shizuma, Mamoru Fujiwara, Masaki Kando, Izuru Daito, Shinya Fujimoto, Fumio Sakai, Seong H. P., "Non-destructive inspection system for special nuclear material using inertial electrostatic confinement fusion neutrons and Laser Compton Scattering Gamma-rays," in IEEE Conference on Technologies for Homeland Security (HST), 2012.

[28] William Bertozzi, Robert J. Ledoux, "Nuclear Resonance Fluorescence Imaging in Non-intrusive Cargo Inspection," 2005.

[29] Toshiyuki Shizuma, Takehito Hayakawa, Ryoichi Hajima, Nobuhiro Kikuzawa, Hideaki Ohgaki, Hiroyuki Toyokawa, "Nondestructive identification of isotopes using nuclear resonance fluorescence," Review of Scientific Instruments, vol. 83, p. 015103, 2012.

[30] J. R. Phillips, "Irradiated Fuel Measurements," in Passive Nondestructive Assay of nuclear materials, Vols. NUREG/CR-5550, D. Reilly, Ed., Washington, Office of Nuclear Regulatory Research, 1991, p. 556.

[31] European Nuclear Society, "Material Unaccounted For," 6 June 2019. https://www.euronuclear.org/glossary/muf/. REFERENCES

[32] Tobin Stephen J., Charlton William S., Fensin Michael L., Menlove Howard O., Hoover A. S., Quiter B. J., Rajasingam A., Swinhoe M. T., Thompson S. J., Charlton W. S., Ehinger M. H., Sandoval N. P., Saavedra S. F., Strohmeyer D., "Determining plutonium in spent fuel with nondestructive assay techniques," in 31st. Annual European Safeguards Research and Development Association (ESRADA) Meeting, Vilnius, Lithuania, 2009.

[33] International Atomic Energy Agency, "Utilization of Accelerator Based Real Time Methods in Investigation of Materials with High Technological Importance," IAEA, Vienna, 2015.

[34] International Atomic Energy Agency, "Nuclear Forensics: Beyond the Science," IAEA, Vienna, 2020.

[35] Michael J. Kristo, "Nuclear Forensics," in Handbook of Radioactivity Analysis Volume 2: Radioanalytical Applications, vol. 2, Lawrence, 2018, p. 1:59.

[36] International Atomic Energy Agency, "Nuclear Forensics in Support of Investigations, IAEA Nuclear Security Series No. 2-G (Rev.1)," IAEA, VIENNA, 2015.

[37] Franz R. Metzger, "Resonance fluorescence in nuclei," Progress in Nuclear Physics, vol. 7, pp. 54-88, 1959.

[38] G. Breit, E. Wigner, "Capture of Slow Neutrons," Physical Review Journals Archive, vol. 49, no. 7, pp. 519-531, 1936.

[39] Vavrek Jayson R., Henderson Brian S., Danagoulian Areg, "Experimental demonstration of an isotope-sensitive warhead verification technique using nuclear resonance fluorescence," REFERENCES 161 Proceedings of the National Academy of Sciences, vol. 115, no. 17, pp. 4363- 4366, 2018.

[40] William Bertozzi, Robert J. Ledoux, "Nuclear resonance fluorescence imaging in non-intrusive cargo inspection," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 241, no. 1, pp. 820-825, 2005.

[41] Takehito Hayakawa, Hideaki Ohgaki, Toshiyuki Shizuma, Ryoichi Hajima, Nobuhiro Kikuzawa, Eisuke Minehara, Toshiteru Kii, Hiroyuki Toyokawa, "Nondestructive detection of hidden chemical compounds with laser Compton-scattering gamma rays," Review of Scientific Instruments, vol. 80, no. 4, p. 045110, 2009.

[42] Takehito Hayakawa, NobuhiroKikuzawa, RyoichiHajima, ToshiyukiShizuma, Nobuyuki Nishimori, MamoruFujiwara, MichioSeya, "Nondestructive assay of plutonium and minor actinide in spent fuel using nuclear resonance fluorescence with laser Compton scattering gamma-rays," Nuclear Instruments and Methods in Physics Research A, vol. 621, no. 1-3, pp. 695 - 700, 2010.

[43] J. Pruet, D. P. McNabb, C. A. Hagmann, F. V. Hartemann, C. P. J. Barty, "Detecting clandestine material with nuclear resonance fluorescence," Journal of Applied Physics, vol. 99, no. 12, p. 123102, 2006.

[44] Nobuhiro Kikuzawa, Ryoichi Hajima, Nobuyuki Nishimori, Eisuke Minehara, Takehito Hayakawa, Toshiyuki Shizuma, Hiroyuki Toyokawa, Hideaki Ohgaki, "Nondestructive Detection of Heavily Shielded Materials by Using Nuclear Resonance Fluorescence with a Laser-Compton Scattering γ-ray Source," Applied Physics Express, vol. 2, no. 3, pp. 1-3, 2009. REFERENCES

[45] O. Beck, T. Ruf, Y. Finkelstein, M. Cardona, T. R. Anthony, D. Belic, T. Eckert, D. Jäger, U. Kneissl, H. Maser, R. Moreh, A. Nord, H. H. Pitz, and A. Wolpert, "Nondestructive determination of the 13C content in isotopic diamond by nuclear resonance fluorescence," Journal of Applied Physics, vol. 83, no. 10, p. 5484, 15 May 1998.

[46] Kenton J. Moody, Patrick M. Grant, Ian D. Hutcheon, Nuclear Forensic Analysis, 1ed., CRC Press, 2005.

[47] Jorge Eduardo Fernandez, Marcelo Rubio, David Bradley, "Radiation Physics and Chemistry," The Journal for Radiation Physics, Radiation Chemistry and Radiation Processing, vol. 154, no. 1, pp. 1-90, 2019.

[48] Hans Bichsel, Heinrich Schindler, "The Interaction of Radiation with Matter," in Particle Physics Reference Library, Detectors for Particles and Radiation, vol. 2, H. S. Christian W. Fabjan, Ed., Switzerland, Springer, 2020, p. 1083.

[49] David S. Chang, Foster D. Lasley, Indra J. Das, FAAPM, FACR, FASTRO, Marc S. Mendonca, Joseph R. Dynlacht, "Interactions of Electromagnetic Radiation with Matter," in Basic Radiotherapy Physics and Biology, Springer, Cham, 2014, pp. 35-41.

[50] Amin Al-Okour, "Radiation Physics: Radiation interaction with matter," Materials Today: Proceedings, 2021.

[51] Daniel R. McAlister, "Gamma Ray Attenuation Properties of Common Shielding Materials," PG Research Foundation, Inc. 1955 University Lane Lisle, IL 60532, USA, 2018.

[52] Walter Huda, Review of Radiologic Physics, 3ed., B. Brown, Ed., Lippincott Williams & Wilkins, a Wolters Kluwer business, 2009. REFERENCES

[53] Ervin B. Podgorsak, Radiation Physics for Medical Physicists, 2ed. , Berlin, Heidelberg: Springer, 2006.

[54] M. H. McKetty, "The AAPM/RSNA physics tutorial for residents. X-ray attenuation," RadioGraphics, vol. 18, no. 1, pp. 145-150, 1998.

[55] M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, K. Olsen, "XCOM: Photon Cross Sections Database," NIST Standard Reference Database 8, Washington, DC.

[56] Gabriel V. Turturica, Calin A. Ur, "Non-destructive techniques for material inspection with quasi-monoenergetic gamma beams," ELI − NP, Bucharest, 2020.

[57] Simon Cherry, James Sorenson, Michael Phelps, Physics in Nuclear Medicine, 4ed., Elsevier , 2012, p. 544.

[58] Paolo Russo, Handbook of X-ray Imaging, CRC Press Taylor & Francis Group, Boca Raton, FL, 2018, p. 1393.

[59] Takeshi Egami, Simon Billinge, Underneath the Bragg Peaks:Structural Analysis of Complex Materials, Pergamon: Elsevier, 2003.

[60] Albert Messiah, Quantum mechanics, Amsterdam: North-Holland Pub. Co.; New York : Interscience Publishers, 1961-62, 1961.

[61] Claude Leroy, Pier-Giorgio Rancoita, Principles of Radiation Interaction In Matter and Detection, 2ed., Singapore: World Scientific Publishing Co. Pte. Ltd., 2009, p. 950.

[62] Thomas S. Curry, James E. Dowdey, Robert C. Murry, Christensen's Physics of Diagnostic Radiology, 4ed., Lippincott Williams & Wilkins, 1990. REFERENCES

[63] Esam M. A. Hussein, Radiation Mechanics, Principles & Practice, 1ed. , Oxford: Elsevier, 2007.

[64] Harvey A. Ziessman, Janis P. O'Malley, James H. Thrall, "Physics of Nuclear Medicine," in Nuclear Medicine, 3ed., J. P. O. J. H. T. Harvey A. Ziessman, Ed., Mosby, The Requisites in Radiology, 2006, pp. 20-33.

[65] Qiao Chen-Kai, Wei Jian-Wei, Chen Lin, "An Overview of the Compton Scattering Calculation," Crystals, vol. 11, no. 5, 2021.

[66] James E. Parks, "The Compton Effect-Compton Scattering and Gamma Ray Spectroscopy," Tennessee, 2015.

[67] O. Klein, Y. Nishina, "Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac," Zeitschrift für Physik, vol. 52, no. 11-12, pp. 853-868, 1929.

[68] Calin Alexandru Ur, "Gamma beam system at ELI − NP ," in AIP Conference Proceedings, 2015.

[69] M. Schumacher, F. Smend, W. Mückenheim, P. Rullhusen, H. G. Börner, "Nuclear photoexcitation and delbrück scattering studied in the energy range 2– 8 MeV," Zeitschrift für Physik A Atoms and Nuclei, vol. 300, pp. 193-203, June 1981.

[70] Lynn Kissel, R. H. Pratt, "Rayleigh Scattering Elastic Photon Scattering By Bound Electrons," in Atomic Inner-Shell Physics, 1ed., New York, Physics of Atoms and Molecules. Springer, Boston, MA., 1985, p. 465– 532. REFERENCES

[71] Szu-yuan Chen, Anatoly Maksimchuk, Donald Umstadter, "Experimental observation of relativistic nonlinear Thomson scattering," Nature, vol. 396, no. 6712, pp. 653-655, 1998.

[72] M. Schumacher, P. Rullhusen, F. Smend, W. Mückenheim, H. G. Börner, "The energy dependence of Delbrück scattering investigated at 𝑍 = 73, 82 and 92," Nuclear Physics A, vol. 346, no. 3, pp. 418-430, 1980.

[73] Lynn Kissel, R. H. Pratt, "New Predictions for Rayleigh Scattering: 10 keV - 10 MeV," Physical Review Letters, vol. 40, no. 6, pp. 387-390, Feb. 1978.

[74] W. R. Johnson, Kwok-tsang Cheng, "Elastic scattering of 0.1– 1 MeV photons," Physical Review, vol. 13, no. 2, pp. 692-698, 1976.

[75] L. Kissel, B. Zhou, S. C. Roy, S. K. Sen Gupta, R. H. Pratt, "The validity of form-factor, modified-form-factor and anomalous-scattering-factor approximations in elastic scattering calculations," Acta Crystallographica Section A, Foundations and Advances, vol. A51, pp. 271-288, 1995.

[76] J. H. Hubbell, W. J. Veigele, E. A. Briggs, R. T. Brown, D. T. Cromer, "Atomic form factors, incoherent scattering functions, and photon scattering cross sections," Journal of Physical and Chemical Reference Data, vol. 4, no. 3, 1975.

[77] J. H. Hubbell, I. O/verbo/, "Relativistic atomic form factors and photon coherent scattering cross sections," Journal of Physical and Chemical Reference Data, vol. 8, no. 1, p. 69, 1979.

[78] Lynn Kissel, "RTAB: the Rayleigh scattering database," Radiation Physics and Chemistry, vol. 59, no. 2, pp. 185-200, 2000. REFERENCES

[79] P. Rullhusen, W. Mückenheim, F. Smend, M. Schumacher, G. P. A. Berg, K. Mork, Lynn Kissel, "Test of vacuum polarization by precise investigation of Delbruck scattering," Physical Review C, vol. 23, no. 4, pp. 1375-1383, 1981.

[80] Martin Schumacher, "Delbrück scattering," Radiation Physics and Chemistry, vol. 56, no. 1-2, pp. 101-111, 1999.

[81] H. Falkenberg, A. Hünger, P. Rullhusen, M. Schumacher, A. I. Milstein, K. Mork, "Amplitudes for Delbrück scattering," Atomic Data and Nuclear Data Tables, vol. 50, no. 1, pp. 1-27, 1992.

[82] A. Scherdin, A. Schäfer, W. Greiner, G. Soff, P. J. Mohr, "Coulomb corrections to Delbrueck scattering," Zeitschrift fuer Physik. A, Hadrons and Nuclei, vol. 353, no. 3, pp. 273-277, September 1995.

[83] Alexander Scherdin, Andreas Schäfer, Walter Greiner, Gerhard Soff, "Delbrück scattering in a strong external field," Phys. Rev. D, vol. 45, no. 8, pp. 2982-2987, 1992.

[84] P. Rullhusen, U. Zurmühl, F. Smend, M. Schumacher, H. G. Börner, and S. A. Kerr, "Giant dipole resonance and Coulomb correction effect in Delbrück scattering studied by elastic and Raman scattering of 8.5 to 11.4 MeV photons," Physical Review C, vol. 27, no. 2, pp. 559-568, 1983.

[85] B. Kasten, D. Schaupp, P. Rullhusen, F. Smend, M. Schumacher, Lynn Kissel, "Coulomb correction effect in Delbrück scattering and atomic Rayleigh scattering of 1– 4 MeV photons," Physical Review C, vol. 33, no. 5, pp. 1606-1615, 1986.

[86] P. Rullhusen, W. Mückenheim, F. Smend, M. Schumacher, G. P. A. Berg, K. Mork, Lynn Kissel, "Test of vacuum polarization by precise REFERENCES investigation of Delbrück scattering," Physical Review C, vol. 23, no. 4, pp. 1375--1383, 1981.

[87] V. A. Plujko, R. Capote, O. M. Gorbachenko, "Giant dipole resonance parameters with uncertainties from photonuclear cross sections," Atomic Data and Nuclear Data Tables, vol. 97, no. 5, pp. 567-585, 2011.

[88] R. Capote, M. Herman, P. Obložinský, P. G. Young, S. Goriely, T. Belgya, A. V. Ignatyuk, A. J. Koning, S. Hilaire, V. A. Plujko, M. Avrigeanu, O. Bersillon, M. B. Chadwick, T. Fukahori, Zhigang Ge, Yinlu Han, S. Kailas, J. Kopecky, V. M. Maslov, et al., "RIPL – Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations," Nuclear Data Sheets, vol. 110, no. 12, pp. 3107-3214, 2009.

[89] E. G. Fuller, Evans Hayward, "The nuclear photoeffect in holmium and erbium," Nuclear Physics, vol. 30, pp. 613-635, 1962.

[90] U. Kneissl, H. H. Pitz, A. Zilges, "Investigation of nuclear structure by resonance fluorescence scattering," Progress in Particle and Nuclear Physics, vol. 37, pp. 349-433, 16 February 1996.

[91] Donald R. Hamilton, "On Directional Correlation of Successive Quanta," Physical Review Journals Archive, vol. 58, no. 2, pp. 122-131, 15 July 1940.

[92] Lawrence W. Fagg, Stanley S. Hanna, "Polarization Measurements on Nuclear Gamma Rays," Reviews of Modern Physics, vol. 31, no. 3, pp. 711- 758, July 1959.

[93] Kai Siegbahn, Alpha-, beta- and gamma-ray spectroscopy. vol. 2, vol. 1, Amsterdam: North-Holland, 1965. REFERENCES

[94] A. H. Wapstra, Nuclear spectroscopy tables, Amsterdam: NorthHolland Pub. Co, 1959.

[95] B. Özel, J. Enders, P. von Neumann-Cosel, I. Poltoratska, A. Richter, D. Savran, S. Volz, A. Zilges, "Systematics of the pygmy dipole resonance in stable tin isotopes from resonant photon scattering," Nuclear Physics A, vol. 788, no. 1-4, pp. 385-388, 2007.

[96] F. Ajzenberg-Selove, "Energy levels of light nuclei 𝐴 = 11 − 12 ," Nuclear Physics .A, vol. 506, pp. 1-158, 1990.

[97] Stanley G. Prussin, Nuclear Physics for Applications: A Model Approach, Berkeley, California: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007.

[98] Samuel A. M. Wong, Introductory Nuclear Physics, 2ed., Wiley-VCH Verlag GmbH & Co. KGaA, 2004.

[99] W. Donner, W. Greiner, "Octupole vibrations of deformed nuclei," Zeitschrift für Physik, vol. 197, no. 5, pp. 440-472, 1966.

[100] U E P Berg, U Kneissl, "Recent Progress on Nuclear Magnetic Dipole Excitations," Annual Review of Nuclear and Particle Science, vol. 37, pp. 33-69, 1987.

[101] J. Bryssinck, L. Govor, V. Yu. Ponomarev, F.Bauwens, O. Beck, D. Belic, D. De Frenne, T. Eckert, C. Fransen, K. Govaert, R. -D. Herzberg, E. Jacobs, U. Kneissl, H. Maser, A. Nord, N. Pietralla, H. H. Pitz, V. Werner, "Systematic study of electric quadrupole excitations in the stable even mass Sn nuclei," Physical Review C, vol. 61, no. 2, p. 024309, 2000. REFERENCES

[102] J. Bryssinck, L. Govor, D. Belic, F. Bauwens, O. Beck, P. von Brentano, D. de Frenne, T. Eckert, C. Fransen, K. Govaert, R. -D. Herzberg, E. Jacobs, U. Kneissl, H. Maser, A. Nord, N. Pietralla, H. H. Pitz, V. Yu. Ponomarev, V. Werner, "Uniform properties of 𝐽 𝜋 = 1 − two-phonon states in the semimagic even-even tin isotopes 116, 118, 120, 122, 124Sn," Physical Review C, vol. 59, no. 4, pp. 1930-1934, 1999.

[103] B. A. Brown, P. M. S. Lesser, D. B. Fossan, "Properties of high-spin states in Nb-91 and Zr-91 via Li-91 induced reactions," Physical Review C, vol. 13, no. 5, pp. 1900-1921, 1976.

[104] D. R. Tilley, J. H. Kelley, J. L. Godwin, D. J. Millener, J. E. Purcell, C. G. heu, H. R. Weller, "Energy levels of light nuclei 𝐴 = 8, 9, 10," Nuclear Physics A, vol. 745, no. 3, pp. 155-362, 2004.

[105] P. Oblozinsky, P. Dimitriou, S. Goriely, Xu Ruirui, Tian Yuan, M. Krticka, R. Schwengner, T. Belgya, N. Iwamoto, H. Utsunomiya, Y. S. Cho, J. Kopecky, S. Siem, R. B. Firestone, T. Kawano, D. M. Filipescu, V. V. Varlamov, V. Plujko, "IAEA Evaluated Photonuclear Data Library (IAEA/PD-2019)," International Atomic Energy Agency, 2020. https://www-nds.iaea.org/photonuclear/pdfilelist.html.

[106] J. M. Blatt, V. F. Weisskopf, Theoretical Nuclear Physics, New York: John Wiley & Sons, 1952.

[107] J. Enders, P. von Brentano, J. Eberth, A. Fitzler, C. Fransen, R.-D. Herzberg, H. Kaiser, L. Käubler, P. von Neumann-Cosel, N. Pietralla, V.Yu. Ponomarev, A. Richter, R. Schwengner, I. Wiedenhöver, "Nuclear resonance fluorescence experiments on 204, 206, 207, 208Pb up to 6.75 MeV," Nuclear Physics A, vol. 724, no. 3-4, pp. 243-273, 2003. REFERENCES

[108] E. Hammar\'en, P. Heikkinen, K. W. Schmid, Amand Faessler, "Microscopic and phenomenological analysis of the Alaga rule for dipole states," Nuclear Physics A, vol. 541, pp. 226-240, 1992.

[109] Kenneth S. Krane, Introductory Nuclear Physics, 2 ed., New York: John Wiley & Sons, Inc., 1987, p. 864.

[110] Warren, Glen A. and Detwiler, Rebecca S. and Peplowski, Patrick N., "Applications of nuclear resonance fluorescence," in Nuclear Science Symposuim, Medical Imaging Conference, Knoxville, TN, USA, 2010.

[111] Glen Warren, Jac Caggiano, Patrick Peplowski, "Potential Applications of Nuclear Resonance Fluorescence," in International Conference on Applications of Nuclear Techniques, 2009.

[112] Jake J. Hecla, Areg Danagoulian, "Nuclear disarmament verification via resonant phenomena," Nature Communications, vol. 9, no. 1, p. 1259, 2018.

[113] L. E. Smith, A. Dougan, S. Tobin, B. Cipiti, M. Ehinger, A. Bakel, R. Bean, J. W. Grate, P. Santi, S. Bryan, M. Kinlaw, J. Schwantes, T. Burr, S. Lehn, K. Tolk, D. Chichester, H. Menlove, D. Vo, D. Duckworth, P. Merkle, T. F. Wang, F. Duran, et al., "AFCI Safeguards Enhancement Study: Technology Development Roadmap," Pacific Northwest National Laboratory (PNNL), Richland, Washington, 2008.

[114] Stephen J. Tobin, Peter Jansson, "Nondestructive assay options for spent fuel encapsulation," Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co, Stockholm, 2013.

[115] Alan Michael Bolind, Michio Seya, "The State of the Art of the Nondestructive Assay of Spent Nuclear Fuel Assemblies- A Critical REFERENCES 171 Review of the Spent Fuel NDA Project of the U.S. Department of Energy's Next Generation Safeguards Initiative," JAEA, 2015.

[116] G. A. Warren, P. N. Peplowski, J. A. Caggiano, "Potential National Security Applications of Nuclear Resonance Fluorescence Methods," Pacific Northwest National Laboratory, Springfield, 2009.

[117] William Bertozzi, Stephen E. Korbly, Robert J. Ledoux, William Park, "Nuclear resonance fluorescence and effective Z determination applied to detection and imaging of special nuclear material, explosives, toxic substances and contraband," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 261, no. 1-2, pp. 331-336, 17 April 2007.

[118] G. V. Turturica, V. Iancu, A. Pappalardo, P. -A. Söderström, E. Açıksöz, D. L. Balabanski, L. Capponi, P. Constantin, V. Fugaru, G. L. Guardo, M. Ilie, S. Ilie, M. Iovea, D. Lattuada, D. Nichita, T. Petruse, A. Spataru, C. A. Ur, "Effective Z evaluation using monoenergetic gamma rays and neural networks," The European Physical Journal Plus, vol. 135, no. 2, p. 140, 28 January 2020.

[119] Y. Liu, B. D. Sowerby, J. R. Tickner, "Comparison of neutron and highenergy X-ray dual-beam radiography for air cargo inspection," Applied Radiation and Isotopes, vol. 66, no. 4, pp. 463-473, 2008.

[120] Rogers Thomas W., Jaccard Nicolas, Protonotarios Emmanouil D. Ollier James, Morton Edward J., Griffin Lewis D., "Threat Image Projection (TIP) into X-ray images of cargo containers for training humans and machines," in IEEE International Carnahan Conference on Security Technology (ICCST), Orlando, FL, USA, 2016. REFERENCES

[121] Thomas W. Rogers, Nicolas Jaccarda, Edward J. Morton, Lewis D. Griffin, "Automated X-ray image analysis for cargo security: Critical review and future promise," Journal of x-Ray Science and Technology, vol. 25, pp. 33-56, 2017.

[122] S. Ogorodnikov, V. Petrunin, "Processing of interlaced images in 4–10 MeV dual energy customs system for material recognition," Physical Review Accelerators and Beams, vol. 5, no. 10, p. 104701, 8 October 2002.

[123] Bernhard A. Ludewigt, Brian J. Quiter, Scott D. Ambers, "Nuclear Resonance Fluorescence for Safeguards Applications," 2011.

[124] Ryoichi Hajima, Takehito Hayakawa, Nobuhiro Kikuzawa, Eisuke Minehara, "Proposal of Nondestructive Radionuclide Assay Using a High-Flux Gamma-Ray Source and Nuclear Resonance Fluorescence," Journal of Nuclear Science and Technology, vol. 45, no. 5, pp. 441-451, 2008.

[125] Toshiyuki Shizuma, Takehito Hayakawa, Christopher T. Angell, Ryoichi Hajima, Futoshi Minato, Kenya Suyama, Michio Seya, Micah S. Johnson, Dennis P. McNabb, "Statistical uncertainties of nondestructive assay for spent nuclear fuel by using nuclear resonance fluorescence," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 737, pp. 170-175, 2014.

[126] Hiroyuki Toyokawa, Hideaki Ohgaki, Takehito Hayakawa, Toshiteru Kii, Toshiyuki Shizuma, Ryoichi Hajima, Nobuhiro Kikuzawa, Kai Masuda, Fumito Kitatani, Hideo Harada, "Two-Dimensional Isotope Imaging of Radiation Shielded Materials Using Nuclear Resonance Fluorescence," Japanese Journal of Applied Physics, vol. 50, no. 10R, p. 100209, 2011. REFERENCES

[127] Heishun Zen, Hideaki Ohgaki, Yoshitaka Taira, Takehito Hayakawa, Toshiyuki Shizuma, Izuru Daito, Jun-ichiro Yamazaki, Toshiteru Kii, Hiroyuki Toyokawa, Masahiro Katoh, "Demonstration of tomographic imaging of isotope distribution by nuclear resonance fluorescence," AIP Advances, vol. 9, no. 035101, pp. 1-7, 2019.

[128] C. A. Hagmann, J. M. Hall, M. S. Johnson, D. P. McNabb, J. H. Kelley, C. Huibregtse, E. Kwan, G. Rusev, A. P. Tonchev, "Transmission-based detection of nuclides with nuclear resonance fluorescence using a quasimonoenergetic photon source," Journal of Applied Physics, vol. 106, no. 084901, pp. 1-7, 2009.

[129] B. J. Quiter, B. A. Ludewigt, V. V. Mozin, C. Wilson, S. Korbly, "Transmission nuclear resonance fluorescence measurements of 238U in thick targets," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 269, no. 10, pp. 1130-1139, 2011.

[130] C. T. Angell, R. Hajima, T. Hayakawa, T. Shizuma, H. J. Karwowski, J. Silano, "Demonstration of a transmission nuclear resonance fluorescence measurement for a realistic radioactive waste canister scenario," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 347, pp. 11-19, 2015.

[131] C. T. Angell, "Enabling in situ thermometry using transmission nuclear resonance fluorescence," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 368, pp. 9-14, 2016.

[132] Thomas A. Holly, Brian G. Abbott, Mouaz Al-Mallah, Dennis A. Calnon, Mylan C. Cohen, Frank P. DiFilippo, Edward P. Ficaro, REFERENCES 174 Michael R. Freeman, Robert C. Hendel, Diwakar Jain, Scott M. Leonard, Kenneth J. Nichols, Donna M. Polk, Prem Soman, "Single photonemission computed tomography," Journal of Nuclear Cardiology, vol. 17, no. 5, pp. 941-973, 2010.

[133] H. E. Martz, D. J. Schneberk, G. P. Roberson, S. G. Azevedo, S. K. Lynch, "Computerized Tomography of High Explosives," in Nondestructive Characterization of Materials IV, 1ed., J. F. B. R. E. G. Clayton O. Ruud, Ed., Boston, MA, Springer US, p. 187–195.

[134] Sameer Singh, Maneesha Singh, "Explosives detection systems (EDS) for aviation security," Signal Processing, vol. 83, no. 1, pp. 31-55, 2003.

[135] Andrea Mouton, Toby Breckon, "A review of automated image understanding within 3D baggage computed tomography security screening," Journal of X-Ray Science and Technology, vol. 23, no. 5, pp. 531-555, 2015.

[136] L. R. Fredrick, "The evolution of computed tomography (CT) as an explosives detection modality," in In Proceedings of the First International Symposium on Explosive Detection Technology, Federal Aviation Administration, Technical Center. Atlantic City, NJ, 1991.

[137] Jongbum Kim, Sunghee Jung, Jinho Moon, Taekyong Kwon, Gyuseong Cho, "Monte Carlo Simulation for the Design of Industrial Gamma-ray Transmission Tomography," Progress in Nuclear Science and TECHNOLOGY, vol. 1, pp. 263-266, 2011.

[138] Nicolas Estre, Daniel Eck, Jean-Luc Pettier, Emmanuel Payan, Christophe Roure, Eric Simon, "High-Energy X-Ray Imaging Applied REFERENCES 175 to Nondestructive Characterization of Large Nuclear Waste Drums," IEEE Transactions on Nuclear Science, vol. 62, no. 6, pp. 3104 - 3109, 2015.

[139] Hiroyuki Toyokawa, Hideaki Ohgaki, Tomohisa Mikado, and Kawakatsu Yamada, "High-energy photon radiography system using laser-Compton scattering for inspection of bulk materials," Review of Scientific Instruments, vol. 73, no. 9, 22 August 2002.

[140] W. Bertozzi, R. J. Ledoux, "Methods and Systemic For Computer Tomography of Nuclear Isotopes Using Nuclear Resonance Fluorescence," U.S. Patent 8,180,019 B2, 2012.

[141] C. P. Barty, F. Albert, S. G. Anderson, P. Armstrong, A. Bayramian, G. Beer, R. Cross, C. A. Ebbers, G. Deis, D. J. Gibson, J. Hall, F. V. Hartemann, T. Houck, R. A. Marsh, M. J. Messerly, H. Phan, V. A. Semenov, S. S. Wu, "Overview of MEGa-ray-based Nuclear Materials Management Activities at the Lawrence Livermore National Laboratory," in 2 nd Annual Meeting, Palm Desert,, Palm Desert, CA, United States, 2011.

[142] Ryoichi Hajima, Takehito Hayakawa, Nobuhiro Kikuzawa, Eisuke Minehara, "Proposal of Nondestructive Radionuclide Assay Using a High-Flux Gamma-Ray Source and Nuclear Resonance Fluorescence," Journal of Nuclear Science and Technology, vol. 45, no. 5, pp. 441-451, 2008.

[143] Estre Nicolas, Eck Daniel, Pettier Jean-Luc, Payan Emmanuel, Roure Christophe, Simon Eric, "High-Energy X-Ray Imaging Applied to Nondestructive Characterization of Large Nuclear Waste Drums," IEEE Transactions on Nuclear Science, vol. 62, no. 6, pp. 3104-3109, 2015. REFERENCES

[144] H. Ohgaki, S. Sugiyama, T. Yamazaki, T. Mikado, M. Chiwaki, K. Yamada, R. Suzuki, T. Noguchi, T. Tomimasu , "Measurement of laserinduced Compton backscattered photons with anti-Compton spectrometer," IEEE Transactions on Nuclear Science, vol. 38, no. 2, pp. 386-392, 1991.

[145] Hideaki Ohgaki, Hiroyuki Toyokawa, Katsuhisa Kudo, Naoto Takeda, Tetsuo Yamazaki, "Generation and application of Laser-Compton gamma-ray at ETL," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 455, no. 1, pp. 54-59, 2000.

[146] H. Ohgaki, I. Daito, T. Kii, H. Zen, T. Hayakawa, T. Shizuma, M. Katoh, J. Yamazaki, Y. Taira, H. Toyokawa, "Study on NRF − CT Imaging by Laser Compton Backscattering Gamma-rays in UVSOR," in International Particle Accelerator Conference (7th), 2016.

[147] F. R. Arutyunian, V. A. Tumanian, "The Compton effect on relativistic electrons and the possibility of obtaining high energy beams," Physics Letters, vol. 4, no. 3, pp. 176-178, 1963.

[148] M. Adachi, H. Zen, T. Konomi, J. Yamazaki, K. Hayashi, M. Katoh, "Design and Construction of UVSOR − III ," in 11th International Conference on Synchrotron Radiation Instrumentation (SRI 2012), Journal of Physics: Conference Series, 2013.

[149] Richard H. Milburn, "Electron Scattering by an Intense Polarized Photon Field," Physical Review Letters, vol. 10, no. 3, pp. 75-77, February 1963. REFERENCES

[150] H. Ohgaki, T. Noguchi, S. Sugiyama, T. Yamazaki, T. Mikado, M. Chiwaki, K. Yamada, R. Suzuki, N. Sei, "Linearly polarized photons from Compton backscattering of laser-light for nuclear resonance fluorescence experiments," Nuclear Instruments and Methods in Physics Research Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 353, no. 1-3, pp. 384-388, December 1994.

[151] Henry R. Weller, Mohammad W. Ahmed, Haiyan Gao, Werner Tornow, Ying K. Wu, Moshe Gai, Rory Miskimen, "Research opportunities at the upgraded HIγS facility," Progress in Particle and Nuclear Physics, vol. 62, no. 1, pp. 257-303, 2009.

[152] O. F Kulikov, Y. Y Telnov, E. I Filippov, M. N Yakimenko, "Compton effect on moving electrons," Physics Letters, vol. 13, no. 4, pp. 344-346, 1964.

[153] R. Klein, P. Kuske, R. Thornagel, G. Brandt, R. Görgen, G. Ulm, "Measurement of the BESSY II electron beam energy by Comptonbackscattering of laser photons," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 486, no. 3, pp. 545-551, 2002.

[154] K. Aoki, K. Hosono, T. Hadame, H. Munenaga, K. Kinoshita, M. Toda, S. Amano, S. Miyamoto, T. Mochizuki, M. Aoki, D. Li, "High-energy photon beam production with laser-Compton backscattering," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 516, no. 2-3, pp. 228-236, 2004.

[155] Sho Amano, Ken Horikawa, Kazuki Ishihara, Shuji Miyamoto, Takehito Hayakawa, Toshiyuki Shizuma, Takayasu Mochizuki, REFERENCES 178 "Several-MeV γ-ray generation at NewSUBARU by laser Compton backscattering," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 602, no. 2, pp. 337-341, 2009.

[156] T. Kaneyasu, Y. Takabayashi, Y. Iwasaki, S. Koda, "Generation of laser Compton gamma-rays in the SAGA light source storage ring," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 659, no. 1, pp. 30- 35, 2011.

[157] K. Kawase, Y. Arimoto, M. Fujiwara, S. Okajima, M. Shoji, S. Suzuki, K. Tamura, T. Yorita, H. Ohkuma, "MeV γ-ray generation from backward Compton scattering at SPring-8," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 592, no. 3, pp. 154-161, 2008.

[158] D. Nutarelli, M. E. Couprie, L. Nahon, R. Bakker, A. Delboulbe, R. Roux, B. Visentin, M. Billardon, "Gamma rays production by intracavity Compton Back Scattering with Super-ACO Storage Ring Free Electron Laser," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 407, no. 1-3, pp. 459-463, 1998.

[159] Vladimir N. Litvinenko, "Recent results with the high intensity γ-ray facility," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 507, no. 1-2, pp. 527-536, 2003.

[160] M. Hosaka, H. Hama, K. Kimura, J. Yamazaki, T. Kinoshita, "Observation of intracavity Compton backscattering of the UVSOR free REFERENCES 179 electron laser," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 393, no. 1-3, pp. 525-529, 1997.

[161] Kii Toshiteru, Masuda Kai, Ohgaki Hideaki, Harada Hideo, Kitatani Fumito, Hayakawa Takehito, Shizuma Toshiyuki, Kikuzawa Nobuhiro, Hajima Ryoichi, Nishimori Nobuyuki, Toyokawa Hiroyuki, "Performance of the LaBr3(Ce) scintillator for nuclear resonance fluorescence experiment," in IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Orlando, 2009.

[162] H. Yang, D. K. Wehe, "Detection of concealed Special Nuclear Material using Nuclear Resonance Fluorescence technique," in IEEE Nuclear Science Symposium Conference Record (NSS/MIC, Orlando, FL, USA, 2009.

[163] V. N. Litvinenko, B. Burnham, M. Emamian, N. Hower, J. M. J. Madey, P. Morcombe, P. G. O'Shea, S. H. Park, Sachtschale, R. Straub, G. K. D. Swift, P. Wang, Y. Wu, R. S. Canon, C. R. Howell, Roberson, N. R. Roberson, E. C. Schreiber, M. Spraker, et al.,, "Gamma-Ray Production in a Storage Ring Free-Electron Laser," Physical Review Letters, vol. 78, no. 24, pp. 4569-4572, 1997.

[164] Phillip M. Rinard, "Application Guide to Shufflers," Los Alamos National Laboratory, Los Alamos, New Mexico, 2001.

[165] Shuji Miyamoto, Yoshihiko Shoji, Sho Amano, Ken Horikawa, Yoshiki Hidaka, Ainosuke Ando, Takayasu Mochizuki, Dazhi Li, Kazuo Imasaki, Kazuhiko Aoki, Yoshihiro Asano, Tetsuya Takagi, "Laser Compton back-scattering gamma-ray source on NewSUBARU," in 2 nd Annual Meeting of Particle Accelerator Society of Japan, Tosu, Japan, 2005. REFERENCES

[166] The ELI-Nuclear Physics working groups, "The White Book of ELI Nuclear Physics Bucharest-Magurele, Romania," Andreas Thoss, 2011.

[167] " BL1U ," UVSOR − III Synchrotron Facility, Institute for Molecular Science, National Institutes of Natural Sciences, [Accessed 22 June 2021]. https://www.uvsor.ims.ac.jp/beamlines/1U/ebl1u.html.

[168] Khaled Ali, Hideaki Ohgaki, Heishun Zen, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Hiroyuki Toyokawa, YoshitakaTaira, Violeta Iancu, Gabriel Turturica, Călin Alexandru Ur, Masaki Fujimoto, Masahiro Katoh, "Experimental Demonstration of Selective Isotope CTImaging Based on Nuclear Resonance Fluorescence Absorption Method," in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Manchester, UK, 2019.

[169] Thomas Flohr, "CT Systems," Current Radiology Reports, vol. 1, no. 1, pp. 52-63, 2013.

[170] Toshio Suzuki, "General formulae of luminosity for various types of colliding beam machines," KEK--76-3, Oho, Ibaraki, 1976.

[171] Heishun Zen, Yoshitaka Taira, Taro Konomi, Takehito Hayakawa, Toshiyuki Shizuma, Junichiro Yamazaki, Toshiteru Kii, Hiroyuki Toyokawa, Masahiro Katoh, Hideaki Ohgaki, "Generation of High Energy Gamma-ray by Laser Compton Scattering of 1.94-μm Fiber Laser in UVSOR − III Electron Storage Ring," Energy Procedia, vol. 89, pp. 335-345, 2016.

[172] Hideo Hirayama, Yoshihito Namito, Alex F. Bielajew, Scott J. Wilderman, Walter R. Nelson,, "The EGS5 code system," SLAC Report REFERENCES 181 number: SLAC-R-730 and KEK Report number: 2005-8, Ibaraki-ken, 2005.

[173] Khaled Ali, Hideaki Ohgaki, Heishun Zen, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Hiroyuki Toyokawa, Yoshitaka Taira, Violeta Iancu, Gabriel Turturica, Călin Alexandru Ur, Masaki Fujimoto, Masahiro Katoh, "Selective Isotope CT Imaging Based on Nuclear Resonance Fluorescence Transmission Method," IEEE Transactions on Nuclear Science, vol. 67, no. 8, pp. 1976-1984, 2020.

[174] Glenn F. Knoll, Radiation Detectibn and Measurement, 3ed., vol. 65, New York: John Wiley & Sons, Inc, 2000, pp. 757-771.

[175] Mikhail Korzhik, Gintautas Tamulaitis, Andrey N. Vasil'ev, Physics of Fast Processes in Scintillators, Cham, Switzerland: Springer Nature Switzerland AG, 2020.

[176] Li Sangang, Cheng Yi, Wang Lei, Yang Li, Liu Huan, Liao Jiawei, Zeng Liyang, Luo Yong, Wang Xiaoyu, Pei Qiuyan & Wang Jie, "The Effect of Intrinsic Radiation from a 3 × 3-in. LaBr3(Ce) Scintillation Detector on In Situ Artificial Radiation Measurements," Nuclear Technology, vol. 204, no. 2, pp. 195-202, 2018.

[177] Hani Negm, Izuru Daito, Heishun Zen, Toshiteru Kii, Kai Masuda, Toshitada Hori, Hideaki Ohgaki, Ryoichi Hajima, Toshiyuki Shizuma, Takehito Hayakawa, Nobuhiro Kikuzawa, Hiroyuki Toyokawa, "A Study of the Nuclear Resonance Fluorescence Reaction Yield Dependence on the Target Thickness of 208Pb," Nuclear Physics and Gamma-Ray Sources for Nuclear Security and Nonproliferation, pp. 291-299, 2014. REFERENCES 182

[178] I. Daito, H. Ohgaki, G. Suliman, V. Iancu, C.A. Ur, M. Iovea, "Simulation Study on Computer Tomography Imaging of Nuclear Distribution by Quasi Monoenergetic Gamma Rays with Nuclear Resonance Fluorescence: Case Study for ELI − NP Application," Energy Procedia, vol. 394, p. 389, 2016.

[179] M. Goto, Andrei Gheata, O. Couet, I. Antcheva, B. Bellenot, V. Onoutchin, G. Ganis, M. Ballintijn, V. Fine, V. Perevoztchikov, N. Buncic, S. Panacek, A. Naumann, A. Kreshuk, R. Maunder, T. Pocheptsov. S. Linev, S. Roiser, L. Moneta, W. Lavrijsen, Root Data Analysis Framework, Geneva: Rene Brun & Fons Rademakers, 2018.

[180] Richard Gordon, Robert Bender, Gabor T. Herman, "Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography," Journal of Theoretical Biology, vol. 29, no. 3, pp. 471-5193, 1970.

[181] Takuso Sato, Stephen J. Norton, Melvin Linzer, Osamu Ikeda, Makoto Hirama, "Tomographic image reconstruction from limited projections using iterative revisions in image and transform spaces," Applied Optics, vol. 20, no. 3, pp. 395-399, 1981.

[182] Johan Nuyts, Bruno De Man, Jeffrey A Fessler, Wojciech Zijewski, Freek J Beekman, "Modelling the physics in the iterative reconstruction for transmission computed tomography," Physics in Medicine & Biology, vol. 58, no. 12, p. 63, 2013.

[183] P. M. Endt, "Energy levels of 𝐴 = 21– 44 nuclei (VII)," Nuclear Physics A, vol. 521, pp. 1-400, 15 May 1990. REFERENCES

[184] AVS. LTD AVS/Express, "General Purpose Visualization Software.," Copyright © 2022 Cybernet Systems CO., LTD., 2022. https://www.cybernet.co.jp/avs/sitemap.html.

[185] Khaled Ali, Heishun Zen, Hideaki Ohgaki, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Hiroyuki Toyokawa, Masaki Fujimoto, Yoshitaka Taira, Masahiro Katoh, "Three-Dimensional Nondestructive Isotope-Selective Tomographic Imaging of 208Pb Distribution via Nuclear Resonance Fluorescence," Applied Sciences, vol. 11, no. 8, 2021.

[186] K. P. Ziock, "Principles and applications of gamma-ray imaging for arms control," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 878, pp. 191-199, 2018.

[187] Julio Diaz, Taeil Kim, Victor Petrov, Annalisa Manera, "X-ray and gamma-ray tomographic imaging of fuel relocation inside sodium fast reactor test assemblies during severe accidents," Journal of Nuclear Materials, vol. 543, 2 October 2020.

[188] Christopher G. Wahl, Willy R. Kaye, Weiyi Wang, Feng Zhang, Jason M. Jaworski, Alexis King, Y. Andy Boucher, Zhong He, "The Polaris-H imaging spectrometer," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 784, pp. 377-381, 2015.

[189] Tai Pham Duc, Ryouichi Nakamura, "Fused visualization of 3D Ultrasound and CT image on navigation system for Water-filled Laparo-endoscopic Surgery," Transactions of Japanese Society for Medical REFERENCES 184 and Biological Engineering, vol. 52, no. Supplement, pp. O-303-O-304, 2014.

[190] Shipeng Xie, Tao Yang, "Artifact Removal in Sparse-Angle CT Based on Feature Fusion Residual Network," IEEE Transactions on Radiation and Plasma Medical Sciences, vol. 5, no. 2, pp. 261-271, 2021.

[191] Khaled Ali, Hideaki Ohgaki, Heishun Zen, Toshiteru Kii, Takehito Hayakawa,Toshiyuki Shizuma, Hiroyuki Toyokawa, Yoshitaka Taira, Masaki Fujimoto, Masahiro Katoh, "Experimental Study on 3-D Isotope-Selective CT Imaging Based on Nuclear Resonance Fluorescence Transmission Method," in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Boston MA, USA, 2020.

[192] Milan Sonka, Vaclav Hlavac, Roger Boyle, Image Processing, Analysis, and Machine Vision, 1ed., H. Gowans, Ed., Springer New York, NY, 1993.

[193] Khaled Ali, Heishun Zen, Hideaki Ohgaki, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Masahiro Katoh, Yoshitaka Taira, Masaki Fujimoto, Hiroyuki Toyokawa, "Fusion Visualization Technique to Improve a Three-Dimensional Isotope-Selective CT Image Based on Nuclear Resonance Fluorescence with a Gamma − CT Image," Applied Sciences, vol. 11, no. 24, 2021.

[194] Linda G. Shapiro, George C. Stockman, Computer Vision, 1ed., Pearson, 2000, p. 608.

[195] G. Evelin Sujji, Y. V. S. Lakshmi, G. Wiselin Jiji, "MRI Brain Image Segmentation based on Thresholding," International Journal of Advanced Computer Research, vol. 3, no. 1, pp. 97-101, 2013. REFERENCES

[196] N. Senthilkumaran, S. Vaithegi, "Image Segmentation By Using Thresholding Techniques For Medical Images," Computer Science & Engineering: An International Journal (CSEIJ), vol. 6, no. 1, pp. 1-13, February 2016.

[197] Ta Yang Goh, Shafriza Nisha Basah, Haniza Yazid, Muhammad Juhairi Aziz Safar, Fathinul Syahir Ahmad Saad, "Performance analysis of image thresholding: Otsu technique," Measurement, vol. 114, pp. 298- 307, 2018.

[198] Liang-Kai Huang, Mao-Jiun J. Wang, "Image thresholding by minimizing the measures of fuzziness," Pattern Recognition, vol. 28, no. 1, pp. 41-51, 1995.

[199] H. K. Anasuya Devi, "Thresholding: A Pixel-Level Image Processing Methodology Preprocessing Technique for an OCR System for the Brahmi Script," Ancient Asia, vol. 1, pp. 161-165, 2006.

[200] Nobuyuki Otsu, "A Threshold Selection Method from Gray-Level Histograms," IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62-66, 1979.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る