リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Extremely large third-order nonlinear optical effects caused by electron transport in quantum plasmonic metasurfaces with subnanometer gaps」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Extremely large third-order nonlinear optical effects caused by electron transport in quantum plasmonic metasurfaces with subnanometer gaps

Takeuchi, Takashi 矢花, 一浩 筑波大学 DOI:33277512

2022.07.14

概要

In this study, a third‑order nonlinear optical responses in quantum plasmonic metasurfaces composed of metallic nano‑objects with subnanometer gaps were investigated using time‑dependent density functional theory, a fully quantum mechanical approach. At gap distances of ≥ 0.6 nm, the third‑order nonlinearities monotonically increased as the gap distance decreased, owing to enhancement of the induced charge densities at the gaps between nano‑objects. Particularly, when the third harmonic generation overlapped with the plasmon resonance, a large third‑order nonlinearity was achieved. At smaller gap distances down to 0.1 nm, we observed the appearance of extremely large third‑ order nonlinearity without the assistance of the plasmon resonance. At a gap distance of 0.1 nm, the observed third‑order nonlinearity was approximately three orders of magnitude larger than that seen at longer gap distances. The extremely large third‑order nonlinearities were found to originate from electron transport by quantum tunneling and/or overbarrier currents through the subnanometer gaps.

この論文で使われている画像

参考文献

1. Meinzer, N., Barnes, W. L. & Hooper, I. R. Plasmonic meta-atoms and metasurfaces. Nat. Photonics 8, 889–898 (2014).

2. Choudhury, S. M. et al. Material platforms for optical metasurfaces. Nanophotonics 7, 959–987 (2018).

3. Aieta, F. et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932–4936 (2012).

4. Khorasaninejad, M. et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

5. Chen, W. T. et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett. 14, 225–230 (2014).

6. Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015).

7. Huang, Y. W. et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett. 15, 3122–3127 (2015).

8. Li, X. et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv. 2, e1601102 (2016).

9. Yu, N. et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 12, 6328–6333 (2012).

10. Ding, F., Wang, Z., He, S., Shalaev, V. M. & Kildishev, A. V. Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach. ACS Nano 9, 4111–4119 (2015).

11. Liu, W. et al. Metasurface enabled wide-angle Fourier lens. Adv. Mater. 30, 1706368 (2018).

12. Liu, W. et al. Energy-tailorable spin-selective multifunctional metasurfaces with full fourier components. Adv. Mater. 31, 1901729 (2019).

13. Suchowski, H. et al. Phase mismatch-free nonlinear propagation in optical zero-index materials. Science 342, 1223–1226 (2013).

14. Celebrano, M. et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat. Nanotechnol. 10, 412–417 (2015).

15. Grinblat, G., Li, Y., Nielsen, M. P., Oulton, R. F. & Maier, S. A. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano. Lett. 16, 4635–4640 (2016).

16. Wurtz, G. A. et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nat. Nanotechnol. 6, 107–111 (2011).

17. Ren, M. et al. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater. 23, 5540–5544 (2011).

18. Harutyunyan, H. et al. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nat. Nanotech- nol. 10, 770–774 (2015).

19. Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).

20. Reshef, O., Leon, I. D., Alam, M. Z. & Boyd, R. W. Nonlinear optical effects in epsilon-near-zero media. Nat. Rev. Mater. 4, 535–551 (2019).

21. Lee, J. et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 511, 65–69 (2014).

22. Qian, H. et al. Large optical nonlinearity enabled by coupled metallic quantum wells. Light Sci. Appl. 8, 13 (2019).

23. Fontana, J. et al. Linear and nonlinear optical characterization of self-assembled, large-area gold nanosphere metasurfaces with sub-nanometer gaps. Opt. Express. 24, 27360–27370 (2016).

24. Doyle, D. et al. Tunable subnanometer gap plasmonic metasurfaces. ACS Photo. 5, 1012–1018 (2018).

25. Menezes, L. D. S. et al. Large third-order nonlinear susceptibility from a gold metasurface far off the plasmonic resonance. J. Opt. Soc. Am. B 36, 1485–1491 (2019).

26. Zuloaga, J., Prodan, E. & Nordlander, P. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett. 9, 887–891 (2009).

27. Mao, L., Li, Z., Wu, B. & Xu, H. Effects of quantum tunneling in metal nanogap on surface-enhanced Raman scattering. Appl. Phys. Lett. 94, 243102 (2009).

28. Esteban, R., Borisov, A. G., Nordlander, P. & Aizpurua, J. Bridging quantum and classical plasmonics with a quantum-corrected model. Nat. Commun. 3, 825 (2012).

29. Barbry, M. et al. Atomistic near-field nanoplasmonics: Reaching atomic-scale resolution in nanooptics. Nano Lett. 15, 3410–3419 (2015).

30. Varas, A., García-González, P., Feist, J., García-Vidal, F. J. & Rubio, A. Quantum plasmonics: From jellium models to ab initio calculations. Nanophotonics 5, 409–426 (2016).

31. Scholl, J. A., García-Etxarri, A., Koh, A. L. & Dionne, J. A. Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 12, 564–569 (2012).

32. Savage, K. J. et al. Revealing the quantum regime in tunnelling plasmonics. Nature 491, 574–577 (2012).

33. Scholl, J. A. et al. Evolution of plasmonic metamolecule modes in the quantum tunneling regime. ACS Nano 10, 1346–1354 (2016).

34. Marinica, D. C., Kazansky, A. K., Nordlander, P., Aizpurua, J. & Borisov, A. G. Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Lett. 12, 1333–1339 (2012).

35. Aguirregabiria, G. et al. Role of electron tunneling in the nonlinear response of plasmonic nanogaps. Phys. Rev. B 97, 115430 (2018).

36. Runge, E. & Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984).

37. Ullrich, C. A. Time-Dependent Density-Functional Theory Concepts and Applications (Oxford University Press, Oxford, 2012).

38. Yamada, S., Noda, M., Nobusada, K. & Yabana, K. Time-dependent density functional theory for interaction of ultrashort light pulse with thin materials. Phys. Rev. B 98, 245147 (2018).

39. Brack, M. The physics of simple metal clusters: Self-consistent jellium model and semiclassical approaches. Rev. Mod. Phys. 65, 677–732 (1993).

40. Yabana, K. & Bertsch, G. F. Time-dependent local-density approximation in real time. Phys. Rev. B 54, 4484–4487 (1996).

41. Bertsch, G. F., Iwata, J. I., Rubio, A. & Yabana, K. Real-space, real-time method for the dielectric function. Phys. Rev. B 62, 7998–8002 (2000).

42. Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981).

43. Noda, M. et al. SALMON: Scalable Ab-initio light-matter simulator for optics and nanoscience. Comput. Phys. Commun. 235, 356–365 (2019).

44. Takeuchi, T., Noda, M. & Yabana, K. Operation of quantum plasmonic metasurfaces using electron transport through subnanom- eter gaps. ACS Photon. 6, 2517–2522 (2019).

45. Ciracì, C., Poutrina, E., Scalora, M. & Smith, D. R. Second-harmonic generation in metallic nanoparticles: Clarification of the role of the surface. Phys. Rev. B 86, 11541 (2012).

46. Toscano, G. et al. Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics. Nat. Commun. 6, 7132 (2015).

47. Ciracì, C. Current-dependent potential for nonlocal absorption in quantum hydrodynamic theory. Phys. Rev. B 95, 245434 (2017).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る