リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Extrapolation of physiologically based pharmacokinetic model for tacrolimus from renal to liver transplant patients」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Extrapolation of physiologically based pharmacokinetic model for tacrolimus from renal to liver transplant patients

Itohara, Kotaro Yano, Ikuko Nakagawa, Shunsaku Yonezawa, Atsushi Omura, Tomohiro Imai, Satoshi Nakagawa, Takayuki Sawada, Atsuro Kobayashi, Takashi Tochio, Akira Sakai, Kaoru Taura, Kojiro Ogawa, Osamu Matsubara, Kazuo 神戸大学

2021.12.10

概要

Physiologically based pharmacokinetic (PBPK) modeling is useful for evaluating differences in drug exposure among special populations, but it has not yet been employed to evaluate the absorption process of tacrolimus. In this study, we developed a minimal PBPK model with a compartmental absorption and transit model for renal transplant patients using available data in the literature and clinical data from our hospital. The effective permeability value of tacrolimus absorption and parameters for the single adjusting compartment were optimized via sensitivity analyses, generating a PBPK model of tacrolimus for renal transplant patients with good predictability. Next, we extrapolated the pharmacokinetics of tacrolimus for liver transplant patients by changing the population demographic parameters of the model. When the physiological parameters of a population with normal liver function were changed to those of a population with impaired hepatic function (Child-Pugh class A) in the constructed renal transplant PBPK model, the predicted tacrolimus concentrations were consistent with the observed concentrations in liver transplant patients. In conclusion, the constructed tacrolimus PBPK model for renal transplant patients could predict the pharmacokinetics in liver transplant patients by slightly reducing the hepatic function, even at three weeks post-transplantation.

この論文で使われている画像

関連論文

参考文献

[1]. Venkataramanan R, Swaminathan A, Prasad T, et al. Clinical pharmacokinetics of

tacrolimus. Clin Pharmacokinet. 1995;29(6):404-30.

https://doi.org/10.2165/00003088-199529060-00003

[2]. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of

tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2004;43(10):623-53.

https://doi.org/10.2165/00003088-200443100-00001

[3]. Masuda S, Inui K. An up-date review on individualized dosage adjustment of

calcineurin inhibitors in organ transplant patients. Pharmacol Ther.

2006;112(1):184-98. https://doi.org/10.1016/j.pharmthera.2006.04.006

30

[4]. Kahan BD, Keown P, Levy GA, Johnston A. Therapeutic drug monitoring of

immunosuppressant drugs in clinical practice. Clin Ther. 2002;24(3):330-50.

https://doi.org/10.1016/s0149-2918(02)85038-x

[5]. Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide

polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin

inhibitors: Part I. Clin Pharmacokinet. 2010;49(3):141-75.

https://doi.org/10.2165/11317350-000000000-00000

[6]. Tada H, Tsuchiya N, Satoh S, et al. Impact of CYP3A5 and MDR1(ABCB1)

C3435T polymorphisms on the pharmacokinetics of tacrolimus in renal transplant

recipients. Transplant Proc. 2005;37(4):1730-2.

https://doi.org/10.1016/j.transproceed.2005.02.073

[7]. Soda M, Fujitani M, Michiuchi R, et al. Association between tacrolimus

pharmacokinetics and cytochrome P450 3A5 and multidrug resistance protein 1

exon 21 polymorphisms. Transplant Proc. 2017;49(6):1492-8.

https://doi.org/10.1016/j.transproceed.2017.03.093

[8]. Uesugi M, Kikuchi M, Shinke H, et al. Impact of cytochrome P450 3A5

polymorphism in graft livers on the frequency of acute cellular rejection in living-

31

donor liver transplantation. Pharmacogenet Genomics. 2014;24(7):356-66.

https://doi.org/10.1097/FPC.0000000000000060

[9]. Hebert MF. Contribution of hepatic and intestinal metabolism and P-glycoprotein

to cyclosporine and tacrolimus oral drug delivery. Adv Drug Deliv Rev. 1997;27(23):201-14. https://doi.org/10.1016/s0169-409x(97)00043-4

[10]. Huang SM, Rowland M. The role of physiologically based pharmacokinetic

modeling in regulatory review. Clin Pharmacol Ther. 2012;91(3):542-9.

https://doi.org/10.1038/clpt.2011.320

[11]. Jamei M, Dickinson GL, Rostami-Hodjegan A. A framework for assessing interindividual variability in pharmacokinetics using virtual human populations and

integrating general knowledge of physical chemistry, biology, anatomy, physiology

and genetics: A tale of 'bottom-up' vs 'top-down' recognition of covariates. Drug

Metab Pharmacokinet. 2009;24(1):53-75. https://doi.org/10.2133/dmpk.24.53

[12]. Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the 'bottom up' and

'top down' approaches in pharmacokinetic modelling: fitting PBPK models to

observed clinical data. Br J Clin Pharmacol. 2015;79(1):48-55.

https://doi.org/10.1111/bcp.12234

32

[13].

Itohara K, Yano I, Tsuzuki T, et al. A minimal physiologically-based

pharmacokinetic model for tacrolimus in living-donor liver transplantation:

Perspectives related to liver regeneration and the cytochrome P450 3A5 (CYP3A5)

Genotype. CPT Pharmacometrics Syst Pharmacol. 2019;8(8):587-95.

https://doi.org/10.1002/psp4.12420

[14].

Nanga TM, Doan TTP, Marquet P, Musuamba FT. Toward a robust tool for

pharmacokinetic-based personalization of treatment with tacrolimus in solid organ

transplantation: A model-based meta-analysis approach. Br J Pharmacol.

2019;85(12):2793-823. https://doi.org/10.1111/bcp.14110

[15].

Yano I, Masuda S, Egawa H, et al. Significance of trough monitoring for

tacrolimus blood concentration and calcineurin activity in adult patients undergoing

primary living-donor liver transplantation. Eur J Clin Pharmacol. 2012;68(3):25966. https://doi.org/10.1007/s00228-011-1129-x

[16].

Achour B, Barber J, Rostami-Hodjegan A. Expression of hepatic drug-

metabolizing cytochrome p450 enzymes and their intercorrelations: a metaanalysis. Drug Metab Dispos. 2014;42(8):1349-56.

https://doi.org/10.1124/dmd.114.058834

33

[17].

Guo Y, Lucksiri A, Dickinson GL, Vuppalanchi RK, Hilligoss JK, Hall SD.

Quantitative prediction of CYP3A4- and CYP3A5-mediated drug interactions. Clin

Pharmacol Ther. 2020;107(1):246-56. https://doi.org/10.1002/cpt.1596

[18].

Gertz M, Houston JB, Galetin A. Physiologically based pharmacokinetic

modeling of intestinal first-pass metabolism of CYP3A substrates with high

intestinal extraction. Drug Metab Dispos. 2011;39(9):1633-42.

https://doi.org/10.1124/dmd.111.039248

[19].

Dai Y, Hebert MF, Isoherranen N, et al. Effect of CYP3A5 polymorphism on

tacrolimus metabolic clearance in vitro. Drug Metab Dispos. 2006;34(5):836-47.

https://doi.org/10.1124/dmd.105.008680

[20].

Barter ZE, Perrett HF, Yeo KR, Allorge D, Lennard MS, Rostami-Hodjegan A.

Determination of a quantitative relationship between hepatic CYP3A5*1/*3 and

CYP3A4 expression for use in the prediction of metabolic clearance in virtual

populations. Biopharm Drug Dispos. 2010;31(8-9):516-32.

https://doi.org/10.1002/bdd.732

[21].

Yu LX, Amidon GL. A compartmental absorption and transit model for

estimating oral drug absorption. Int J Pharm. 1999;186(2):119-25.

https://doi.org/10.1016/s0378-5173(99)00147-7

34

[22].

Ando H, Izawa S, Hori W, Nakagawa I. Utility of a single adjusting

compartment: a novel methodology for whole body physiologically-based

pharmacokinetic modelling. Theor Biol Med Model. 2008;5:19.

https://doi.org/10.1186/1742-4682-5-19

[23].

Abduljalil K, Cain T, Humphries H, Rostami-Hodjegan A. Deciding on success

criteria for predictability of pharmacokinetic parameters from in vitro studies: an

analysis based on in vivo observations. Drug Metab Dispos. 2014;42(9):1478-84.

https://doi.org/10.1124/dmd.114.058099

[24].

Satoh S, Kagaya H, Saito M, et al. Lack of tacrolimus circadian

pharmacokinetics and CYP3A5 pharmacogenetics in the early and maintenance

stages in Japanese renal transplant recipients. Br J Clin Pharmacol. 2008;66(2):20714. https://doi.org/10.1111/j.1365-2125.2008.03188.x

[25].

Japanese FK 506 Study Group. Japanese study of kidney transplantation: 1.

Results of early phase II study. Transpl Int. 1992;5(Suppl 1):S524-8.

https://doi.org/10.1007/978-3-642-77423-2_154

[26].

Custodio JM, Wu CY, Benet LZ. Predicting drug disposition,

absorption/elimination/transporter interplay and the role of food on drug

35

absorption. Adv Drug Deliv Rev. 2008;60(6):717-33.

https://doi.org/10.1016/j.addr.2007.08.043

[27].

US FDA, CDER. Guidance for Industry. Waiver of in vivo bioavailability and

bioequivalence studies for immediate-release solid oral dosage forms based on a

biopharmaceutics classification system.

https://www.fda.gov/media/70963/download. (2017). Accessed 20 July 2020.

[28].

Yagi S, Iida T, Taniguchi K, et al. Impact of portal venous pressure on

regeneration and graft damage after living-donor liver transplantation. Liver

Transpl. 2005;11(1):68-75. https://doi.org/10.1002/lt.20317

[29].

Iida T, Isaji S, Yagi S, et al. Assessment of liver graft function and

regeneration by galactosyl-human serum albumin (99mTc-GSA) liver scintigraphy

in adult living-donor liver transplantation. Clin Transplant. 2009;23(2):271-7.

https://doi.org/10.1111/j.1399-0012.2008.00933.x

[30].

Marcos A, Fisher RA, Ham JM, et al. Liver regeneration and function in donor

and recipient after right lobe adult to adult living donor liver transplantation.

Transplantation. 2000;69(7):1375-9. https://doi.org/10.1097/00007890-20000415000028

36

[31].

Akamatsu N, Sugawara Y, Tamura S, Imamura H, Kokudo N, Makuuchi M.

Regeneration and function of hemiliver graft: right versus left. Surgery.

2006;139(6):765-72. https://doi.org/10.1016/j.surg.2005.12.011

[32].

Zhu L, Yang J, Zhang Y, Jing Y, Zhang Y, Li G. Effects of CYP3A5 genotypes,

ABCB1 C3435T and G2677T/A polymorphism on pharmacokinetics of tacrolimus

in Chinese adult liver transplant patients, Xenobiotica. 2015;45(9):840-6.

https://doi.org/10.3109/00498254.2015.1021733

[33].

Lu YX, Su QH, Wu KH, Ren YP, Li L, Zhou TY, et al. A population

pharmacokinetic study of tacrolimus in healthy Chinese volunteers and liver

transplant patients, Acta Pharmacol Sin. 2015;36(2):281-8.

https://doi.org/10.1038/aps.2014.110

[34].

Shao J, Wang C, Fu P, Chen F, Zhang Y, Wei J. Impact of donor and recipient

CYP3A5*3 genotype on tacrolimus population pharmacokinetics in Chinese adult

liver transplant recipients Ann Pharmacother. 2020;54(7):652-61.

https://doi.org/10.1177/1060028019897050.

[35].

Chen B, Shi HQ, Liu XX, Zhang WX, Lu JQ, Xu BM, et al. Population

pharmacokinetics and Bayesian estimation of tacrolimus exposure in Chinese liver

transplant patients. J Clin Pharm Ther. 2017;42(6):679-88.

37

https://doi.org/10.1111/jcpt.12599.

[36].

Ohtani H, Barter Z, Minematsu T, Makuuchi M, Sawada Y, Rostami-Hodjegan

A. Bottom-up modeling and simulation of tacrolimus clearance: prospective

investigation of blood cell distribution, sex and CYP3A5 expression as covariates

and assessment of study power. Biopharm Drug Dispos. 2011;32(9):498-506.

https://doi.org/10.1002/bdd.777.

[37].

Darwich AS, Neuhoff S, Jamei M, Rostami-Hodjegan A. Interplay of

metabolism and transport in determining oral drug absorption and gut wall

metabolism: a simulation assessment using the "Advanced Dissolution, Absorption,

Metabolism (ADAM)" model. Curr Drug Metab. 2010;11(9):716-29.

https://doi.org/10.2174/138920010794328913

[38].

Yau E, Petersson C, Dolgos H, Peters SA. A comparative evaluation of models

to predict human intestinal metabolism from nonclinical data. Biopharm Drug

Dispos. 2017;38(3):163-86. https://doi.org/10.1002/bdd.2068

[39].

Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the

human multidrug-resistance gene: multiple sequence variations and correlation of

one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci

U S A. 2000;97(7):3473-8. https://doi.org/10.1073/pnas.050585397

38

[40].

Li D, Gui R, Li J, Huang Z, Nie X. Tacrolimus dosing in Chinese renal

transplant patients is related to MDR1 gene C3435T polymorphisms. Transplant

Proc. 2006;38(9):2850-2. https://doi.org/10.1016/j.transproceed.2006.08.089

[41].

Prasad N, Jaiswal A, Behera MR, et al. Melding Pharmacogenomic effect of

MDR1 and CYP3A5 gene polymorphism on tacrolimus dosing in renal transplant

recipients in Northern India. Kidney Int Rep. 2019;5(1):28-38.

https://doi.org/10.1016/j.ekir.2019.09.013

39

Figure legends

Figure 1.

Workflow for development of physiologically based pharmacokinetic

(PBPK) model in this study.

Figure 2.

Sensitivity analysis for the dose-normalized area under the concentration-time curve

from 0 to 12 h (AUC0-12h), the maximum blood concentration (Cmax), the trough blood

concentration (Cmin), and the time to maximum blood concentration (Tmax) vs. input rate

constant (kin) and output rate constant (kout) for the representative Vsac value (Vsac=1 x

10-5, 11.8, and 20.0 L/kg).

The blue and red layers represent simulated and observed values, respectively.

Figure 3. The physiologically based pharmacokinetic model-predicted vs. observed

time concentration profiles corrected for a dosage of 1 mg of tacrolimus in renal

transplant patients (n=18; a) and liver transplant patients (n=13; b). The closed circles

represent dose-normalized observed concentrations. The crosses represent dosenormalized observed concentrations in a patient which were outside the 90% prediction

40

interval using the Child-Pugh A (CP-A) Japanese population. The red, blue, and purple

lines represent the median, 5th, and 95th percentiles of predicted concentrations,

respectively. The predicted concentrations were the results of each simulation

performed using 100 subjects. The solid and broken lines represent the concentration

profile predicted by the renal transplant model using the demographics of the CP-A and

Child-Pugh B (CP-B) Japanese populations, respectively.

Figure 4. Sensitivity analysis of the dose of tacrolimus (a), hematocrit (b), albumin (c),

abundances of CYP3A4 and CYP3A5 in the liver and small intestine (d-g) for the

trough concentration (Cmin). Each red circle shows the value in a representative virtual

subject used in this simulation.

Figure 5. Simulated trough blood concentration/dose (Cmin/D) ratio of tacrolimus in

renal (a) and liver (b) transplant patients in each cytochrome P450 3A5 (CYP3A5)

phenotype, respectively. Each box plot represents an interquartile range with a 90%

prediction interval. The closed circles represent the data points outside the 5th to 95th

percentiles. Each simulation was performed using 100 subjects, a female patient

41

proportion of 50%, and an age range of 20-70 years. EM; extensive metabolizer, PM;

poor metabolizer

42

Table 1. Observed and predicted pharmacokinetic parameters of tacrolimus

Parameters

Renal transplantation

AUC0-12h/dose, ng·h/mL/mg

Cmax/dose, ng/mL/mg

Cmin/dose , ng/mL/mg

Tmax, h

Observed

(n=18)

GM

GSD

31.8

1.48

4.23

1.49

1.63

1.65

2.48

1.55

1)

Base model

(Peff=5.95×10-4)

GM

%PE

153

381

14.9

253

11.0

576

1.48

-40.5

Final model

(Peff=0.65×10-4)

GM

%PE

31.9

0.224

3.95

-6.47

1.52

-6.53

2.31

-6.77

Renal transplant

model with

CP-A Japanese

GM

%PE

Renal transplant

model with

CP-B Japanese

GM

%PE

Renal transplant

model with

CP-C Japanese

GM

%PE

GM

GSD

Renal transplant

model with

Healthy Japanese

GM

%PE

AUC0-12h/dose, ng·h/mL/mg

40.9

2.56

32.9

-19.5

38.8

-5.04

66.5

62.7

97.7

139

Cmax/dose, ng/mL/mg

4.59

2.56

4.03

-12.4

4.53

-1.56

7.05

53.2

9.83

114

Cmin/dose , ng/mL/mg

2.86

2.57

1.56

-45.1

2.00

-29.7

4.00

40.4

6.39

124

Tmax, h

2.55

1.54

2.33

-8.80

2.37

-6.89

2.48

-2.70

2.54

-0.24

Liver transplantation

Observed

(n=13)

Peff: effective permeability, GM: geometric mean, GSD: geometric standard deviation, %PE: percentage

prediction error, AUC0-12h: area under the concentration-time curve from 0 to 12 h, Cmax: maximum blood

concentration, Cmin: trough blood concentration, Tmax: time to maximum blood concentration

The predicted values were the results of each simulation performed using 100 subjects

1) Yano I et al. Eur J Clin Pharmacol. 2012;68(3):259-66.

43

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る