リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Longer time of implantation using the buried pin technique for intramedullary nailing would decrease refracture in the diaphyseal forearm fracture in children-retrospective multicenter (TRON) study」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Longer time of implantation using the buried pin technique for intramedullary nailing would decrease refracture in the diaphyseal forearm fracture in children-retrospective multicenter (TRON) study

Ohshima, Kazuma Tokutake, Katsuhiro Takegami, Yasuhiko Asami, Yuta Matsubara, Yuji Natsume, Tadahiro Kimura, Yoshihiko Ishihara, Noriko Imagama, Shiro 名古屋大学

2023.03

概要

Pediatric diaphyseal forearm fractures (PDFF) are common injuries, accounting for 5.4–
14.9% of all pediatric fractures.1,2 Operative treatment might be needed for unstable, irreducible, or
open diaphyseal forearm fractures.3 In operative management of PDFF, intramedullary nailing of
pediatric forearm fractures has been rapidly adopted as a “minimally invasive” treatment compared
with plate fixation.4
After inserting the Kirschner wire (K-wire), surgeons have to determine whether the tips of
the K-wire are buried or exposed. Each option for the tip has advantages and disadvantages. The
buried technique allows for long-term implantation (>8 weeks), which may be related to decreased
refracture and a reduced rate of infection.5-7 However, implant removal of the buried K-wire fixation
frequently needs to be performed in the operating room, and the buried technique may risk
complications at the application site such as tendon (especially extensor pollicis longus) irritation,
irritation pain, and damage to the superficial sensory branch of the radial nerve.8,9 Although some
authors reported that the exposed K-wire is a safe treatment method and easy to remove without
complications,9,10 others reported that exposed K-wire fixation in pinning increases risks of infection
and early removal.11,12 Thus, it remains controversial whether the tips of K-wires should be buried or
exposed for the treatment of PDFF. ...

参考文献

1.

Cheng JC, Ng BK, Ying SY, Lam PK. A 10-year study of the changes in the pattern and

15

treatment of 6,493 fractures. J Pediatr Orthop. 1999;19:344–350.

2.

Rennie L, Court-Brown CM, Mok JY, Beattie TF.The epidemiology of fractures in children.

Injury. 2007;38(8):913–922.

3.

Teoh KH, Chee YH, Shortt N, Wilkinson G, Porter DE. An age- and sex-matched

comparative study on both-bone diaphyseal paediatric forearm fracture. J Child Orthop.

2009;3(5):367–373.

4.

Flynn JM, Jones KJ, Garner MR, Goebel J.Eleven years experience in the operative

management of pediatric forearm fractures. J Pediatr Orthop. 2010;30(4):313–319.

5.

Lascombes P, Haumont T, Journeau, P. Use and abuse of flexible intramedullary nailing in

children and adolescents. J Pediatr Orthop. 2006;26(6):827–834.

6.

Hargreaves DG, Drew SJ, Eckersley R. Kirschner wire pin tract infection rates: a randomized

controlled trial between percutaneous and buried wires. J Hand Surg.2004;29(4):374–376.

7.

Fujihara, Y, Ota H, Sakai A. Prognostic factors for postoperative complications after K-wire

fixation for paediatric forearm fractures: a multivariate analysis. J Pediatr Orthop B.

2022;31(1):50–54.

8.

Chen L, Wang Y, Li S, Luo R, Zhou W, Li Y, et al. Effect of buried vs. exposed Kirschner wire

osteosynthesis on phalangeal, metacarpal and distal radial fractures: a systematic review and

meta-analysis. Arthroplasty. 2020;2(1):1–9.

16

9.

Kelly BA, Miller P, Shore BJ. Exposed versus buried intramedullary implants for pediatric

forearm fractures: a comparison of complications. J Pediatr Orthop. 2014;34(8):749–755.

10. Dinçer R, Köse A, Topal M, Öztürk İA, Engin MÇ.. Surgical treatment of pediatric forearm

fractures with intramedullary nails: Is it a disadvantage to leave the tip exposed? J Pediatr

Orthop B. 2020;29(2):158–163.

11. Raghavan R, Jones, A, Dwyer AJ. Should Kirschner wires for fixation of lateral humeral

condyle fractures in children be buried or left exposed? A systematic review. Orthop Traumatol

Surg Res. 2019;105(4):739–745.

12. Ridley TJ, Freking W, Erickson LO, Ward CM. Incidence of treatment for infection of buried

versus exposed Kirschner wires in phalangeal, metacarpal, and distal radial fractures. J Hand

Surg. 2017;42(7):525–531.

13. Slongo TF, Audigé L; AO Pediatric Classification Group. Fracture and dislocation classification

compendium for children: the AO Pediatric comprehensive classification of long bone fractures

(PCCF). J Orthop Trauma. 2007;21(10 Suppl):S135–S160.

14. Hadizie D, Munajat I. Both-bone forearm fractures in children with minimum four years of

growth remaining: Can cast achieve a good outcome at skeletal maturity? Malays Orthop J.

2017;11(3):1–9.

15. Litrenta J, Tornetta P 3rd, Mehta S, Jones C, OʼToole RV, Bhandari M. Determination of

17

radiographic healing: an assessment of consistency using RUST and modified RUST in

metadiaphyseal fractures. J Orthop Trauma. 2015; 29(11):516–520.

16.

Kooistra BW, Dijkman BG, Busse JW, Sprague S, Schemitsch EH, Bhandari M. The

radiographic union scale in tibial fractures: reliability and validity. J Orthop Trauma.

2010;24:S81–S86.

17. Kizkapan TB, Misir A, Oguzkaya S, Ozcamdalli M, Uzun E, Sayer G. Reliability of

radiographic union scale in tibial fractures and modified radiographic union scale in tibial

fractures scores in the evaluation of pediatric forearm fracture union. Jt Dis Relat Surg.

2021;32(1):185–191.

18. Valisena S, Gonzalez JG, Voumard NM, Hamitaga F, Ciritsis BD, Mendoza Sagaon M, et al.

Treatment of paediatric unstable displaced distal radius fractures using Kapandji technique: a

case series. Eur J Orthop Surg Traumatol. 2019;29(2):413-420.

19. Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics.

Bone Marrow Transplantation. 2013;48(3):452–458.

20. Makki D, Kheiran A, Gadiyar R, Ricketts D. Refractures following removal of plates and

elastic nails from paediatric forearms. J Pediatr Orthop B. 2014;23(3):221–226.

21. Martus JE, Preston RK, Schoenecker JG, Lovejoy SA, Green NE, Mencio GA. Complications

and outcomes of diaphyseal forearm fracture intramedullary nailing: a comparison of pediatric

18

and adolescent age groups. J Pediatr Orthop. 2013;33(6):598–607.

22. Tsukamoto N, Mae T, Yamashita A, Hamada T, Miura T, Iguchi T.Refracture of pediatric bothbone diaphyseal forearm fracture following intramedullary fixation with Kirschner wires is

likely to occur in the presence of immature radiographic healing. Eur J Orthop Surg Traumatol.

2020;30(7):1231–1241.

23. Wilkins KE. Principles of fracture remodeling in children. Injury. 2005;36 Suppl 1:A3–A11.

24. Stahl S, Schwartz O. Complications of K-wire fixation of fractures and dislocations in the hand

and wrist. Arch Orthop Trauma Surg. 2001;121(9):527–530.

25. Koç T, Ahmed J, Aleksyeyenko S. Buried Kirschner wires in hand trauma. Eur J Plast Surg.

2012;35(11):803–7.

26. Di Giacinto S, Pica G, Stasi A, Scialpi L, Tomarchio A, Galeotti A, et al. The challenge of

the surgical treatment of paediatric distal radius/ forearm fracture: K wire vs plate fixation outcomes assessment. Med Glas (Zenica). 2021;18(1):208-215.

Figure legends

Figure 1. Patient selection flow diagram.

Figure 2. The cumulative incidence of refractures and when refractures occurred postoperatively in

both groups.

19

TABLE 1. Demographic Data and Preoperative Information

Group B (n=79)

Group E (n=64)

p Value

Age, yrs, mean (SD)

9.43 (2.85)

8.78 (3.42)

0.217

Sex, Male/Female, n (%)

60 (75.9)/19 (24.1)

44 (60.8)/19 (30.2)

0.449

Height, cm, mean (SD)

133.38 (18.20)

132.36 (22.95)

0.778

Weight, kg, mean (SD)

31.76 (14.41)

31.43 (13.59)

0.893

BMI percentile (SD)

42.14 (29.03)

47.22 (28.51)

0.325

Injured hand, Right/Left, n (%)

42 (53.2)/37 (46.8)

20 (31.2)/44 (68.8)

0.011*

Sports injury

21 (26.6)

21 (32.8)

0.423

Low energy (falling down)

25 (31.6)

23 (35.9)

High energy (fall from high place/bicycle, etc.)

33 (41.8)

20 (31.2)

2.18 (6.35)

3.31 (8.53)

0.363

Isolated fracture of the radius

9 (11.4)

4 (6.2)

0.297

Isolated fracture of the ulna

5 (6.3)

8 (12.5)

Both bone fractures operated both bones

58 (73.4)

42 (65.6)

Both bone fractures operated isolated radius

5 (6.3)

5 (7.8)

Both bone fractures operated isolated ulna

2 (2.5)

5 (7.8)

22r-D/2.1(green stick)

5 (6.9)

10 (19.6)

22r-D/4.1(complete transverse, simple)

50 (69.4)

27 (52.9)

22r-D/4.2(complete transverse, multi-fragment)

1 (1.4)

1 (2.0)

22r-D/5.1(complete oblique, simple)

16 (22.2)

13 (25.5)

22u-D/1.1(bowing)

2 (2.8)

3 (5.0)

22u-D/2.1(green stick)

11 (15.5)

10 (16.7)

22u-D/4.1(complete transverse, simple)

33 (46.5)

21 (35.0)

22u-D/4.2(complete transverse, multi-fragment)

0 (0.0)

1 (1.7)

22u-D/5.1(complete oblique, simple)

21 (29.6)

18 (30.0)

22u-D/5.2(complete oblique, multi-fragment)

4 (5.6)

6 (10.0)

22u-D/6.1(Monteggia, simple)

0 (0.0)

1 (1.7)

22u-D/6.2(Monteggia, multi-fragment)

2 (2.8)

3 (5.0)

Distal 1/3

14 (19.4)

13 (25.5)

Middle 1/3

36 (50.0)

28 (54.9)

Proximal 1/3

22 (30.6)

10 (19.6)

Injury mechanism, n (%)

Time from injury to surgery, days, mean (SD)

Fracture bone, n (%)

AO classification (R), n (%)

0.102

AO classification (U), n (%)

0.62

Fracture level (R), n (%)

Fracture level (U), n (%)

0.366

Distal 1/3

7 (10.8)

7 (12.7)

0.342

Middle 1/3

40 (61.5)

39 (70.9)

Proximal 1/3

18 (27.7)

9 (16.4)

Compartment syndrome, n (%)

0 (0)

0 (0)

Nerve symptoms, n (%)

5 (6.3)

5 (7.8)

0.753

Preoperative complications

Preoperative radiographic data

Angulation view (R), degrees, mean (SD)

20.82 (14.32)

24.49 (15.38)

0.177

Angulation view (U), degrees, mean (SD)

21.12 (16.29)

23.66 (16.35)

0.397

Displacement (R), n (%)

Minimal displacement or only angulation

11 (15.3)

8 (15.7)

Partial contact

35 (48.6)

33 (64.7)

No contact

26 (36.1)

10 (19.6)

Minimal displacement or only angulation

10 (15.4)

14 (25.5)

Partial contact

31 (47.7)

23 (41.8)

No contact

24 (36.9)

18 (32.7)

0.131

Displacement (U), n (%)

0.423

SD indicates standard deviation; BMI, body mass index; (R), radius; (U), ulna; AP, antero-posterior; ML,

mediolateral.

*p <0.05.

TABLE 2. Surgical Information, Postoperative Management, and Status of Bone Union

Group B

(n=79)

Group E

(n=64)

p Value

56.25 (25.20)

50.80 (36.82)

0.335

Closed reduction

55 (77.5)

45 (90.0)

0.196

Kapandji techniques

8 (11.3)

3 (6.0)

Open reduction

8 (11.3)

2 (4.0)

Closed reduction

53 (81.5)

43 (79.6)

Kapandji techniques

5 (7.7)

5 (9.3)

7 (10.8)

6 (11.1)

Dorsal entry point

35 (48.6)

5 (10.0)

Lateral entry point

37 (51.4)

45 (90.0)

Through olecranon entry point

58 (89.2)

47 (87.0)

Proximal lateral entry point

7 (10.8)

7 (13.0)

Time from operation to splint off, days, mean (SD)

34.07 (12.92)

39.88 (13.08)

0.013*

Time from operation to removal of activity restrictions,

months, mean (SD)

Time from operation to implant removal, days, mean

(SD)

Anesthesia for implant removal

3.83 (1.85)

3.05 (0.71)

0.014*

187.90 (107.91)

41.39 (24.26)

<0.001*

No or local anesthesia

17 (21.5)

52 (82.5)

General or regional anesthesia,

62 (78.5)

11 (17.5)

<0.001*

mRUST score at 3 months (R), median [range]

15.00 [8.00, 16.00]

15.00 [8.00, 16.00]

0.444

mRUST score at 3 months (U), median [range]

14.00 [6.00, 16.00]

14.00 [8.00, 16.00]

0.83

mRUST score at 6 months (R), median [range]

16.00 [11.00, 16.00]

16.00 [12.00, 16.00]

0.402

mRUST score at 6 months (U), median [range]

16.00 [12.00, 16.00]

16.00 [12.00, 16.00]

0.768

Surgical information

Operative time, min, mean (SD)

Reduction(R), n (%)

Reduction(U), n (%)

Open reduction

Insertion position of K-wire (R), n (%)

0.943

<0.001*

Insertion position of K-wire (U), n (%)

0.78

Postoperative management including implant removal

Status of bone union

SD indicates standard deviation; K-wire, Kirshner wire; mRUST, modified radiographic union scale in tibial

fractures; (R), radius; (U), ulna.

*p <0.05.

Table.3 Postoperative Complications

Group B

Group E

(n=79)

(n=64)

p.value

Refracture, n (%)

6 (7.9)

21(32.8)

Infection, n (%)

3 (3.8)

7(10.9)

0.112

Nerve injury, n (%)

1 (1.2)

0 (0.0)

Tendon rupture, n (%)

Irritation pain, n (%)

Nonunion

Penetration of implant through skin(%)

*p <.05

12 (15.2)

4(5.1)

1 (1.6)

<0.001*

0.006*

Table.4 Comparison of mRUST score between patients with and without refracture

Refracture cases

No refracture cases

p.value

mRUST score at 3month (R), median (range)

15.00 [8.00, 16.00]

15.00[8.00, 16.00]

0.96

mRUST score at 3month (U), median (range)

14.00 [9.00, 16.00]

14.00 [6.00, 16.00]

0.644

mRUST score at 6month (R), median (range)

16.00 [13.00, 16.00]

16.00 [12.00, 16.00]

0.93

mRUST score at 6month (U), median (range)

15.00 [12.00, 16.00]

16.00 [11.00, 16.00]

0.139

Abbreviations: mRUST, modified radiographic union scale in tibial fractures;

(R), Radius; (U), Ulna; *p <.05

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る